
VIM 5.6 Reference Guide

version 0.7

Bram Moolenaar Oleg Raisky

April 8, 2000

Conventions:

:marks denotes VIM command typed in Ex mode
visual denotes VIM command typed in Visual mode
[..] denotes an optional part of the command
�le denotes command argument(s)
f..g denotes a set of characters
Space means pressed key/combination of keys

, this command/feature is VIM speci�c (not found in Vi)

Contents

1 Movement Commands 3
1.1 Left-right motions . 3
1.2 Up-down motions . 3
1.3 Text object motions . 3
1.4 Scrolling . 4
1.5 Various motions . 4
1.6 Marks and motions . 4
1.7 Using tags . 4

2 Editing Commands 5
2.1 Inserting text . 5
2.2 Keys in Insert mode . 5
2.3 Special keys in Insert mode . 6
2.4 Digraphs, . 6
2.5 Special inserts . 6
2.6 Deleting text . 6
2.7 Copying and moving text . 6
2.8 Changing text . 7
2.9 Complex changes . 7
2.10 Visual mode, . 8
2.11 Text objects . 9
2.12 Repeating Commands . 9
2.13 Undo/Redo Commands . 10
2.14 Command-line editing . 10
2.15 Encryption . 10

3 Key Mappings Abbreviations 11
3.1 Key mapping . 11
3.2 Abbreviations . 11
3.3 User-de�ned commands, . 12

4 Options 13
4.1 Setting Options . 13
4.2 Option explanation . 13

CONTENTS 2

5 Other Commands 17
5.1 Shell Commands . 17
5.2 QuickFix Commands, . 17
5.3 Viminfo Commands, . 17
5.4 Various Commands . 18

6 Ex ranges and search patterns 19
6.1 Ranges . 19
6.2 Special Ex characters . 19
6.3 Pattern searches . 19
6.4 Special characters in search patterns . 19
6.5 O�sets allowed after search command . 21

7 Starting, Writing and Quitting Commands 21
7.1 Starting VIM . 21
7.2 Editing a �le . 22
7.3 Using the argument list . 22
7.4 Writing and quitting . 22

8 Windows and Bu�ers functions 23
8.1 Multi-window functions, . 23
8.2 Bu�er list functions . 24

9 Script Language 24
9.1 Variables . 24
9.2 Expression syntax . 25
9.3 Functions . 26
9.4 User-De�ned Functions . 31
9.5 Commands . 31

10 GUI 32
10.1 Mouse Control . 32
10.2 Window Position . 33
10.3 Menus . 33
10.4 Miscellaneous . 34

11 Syntax highlighting 35
11.1 Syntax �les . 35
11.2 De�ning a syntax . 35
11.3 Syntax arguments . 36
11.4 Syntax patterns . 37
11.5 Synchronizing . 38
11.6 Highlight command . 39
11.7 Linking groups . 41

12 Automatic Commands 41
12.1 De�ning autocommands . 41
12.2 Removing autocommands . 41
12.3 Listing autocommands . 41
12.4 Events . 42
12.5 Patterns . 43
12.6 Filetypes . 43
12.7 Groups . 43
12.8 Executing autocommands . 44
12.9 Using autocommands . 44

13 Miscellany 45
13.1 VIM modes . 45
13.2 VIM registers . 46

1 MOVEMENT COMMANDS 3

1 Movement Commands

1.1 Left-right motions

[n] h left (also: CTRL-H , BS , or key)

[n] l right (also: Space or ! key)

0 to �rst character in the line (also: Home key)
b to �rst non-blank character in the line
[n] $ to the last character in the line (n-1 lines lower) (also: End key)

[n] g0 to �rst character in screen line (di�ers from 0 when lines wrap)
[n] gb to �rst non-blank character in screen line (di�ers from b when lines wrap)
[n] g$ to last character in screen line (di�ers from $ when lines wrap)
[n] gm to middle of the screen line
[n] j to column n (default: 1)
[n] f char to the n-th occurrence of char to the right
[n] F char to the n-th occurrence of char to the left
[n] t char till before the n-th occurrence of char to the right
[n] T char till before the n-th occurrence of char to the left
[n] ; repeat the last f, F, t, or T n times
[n] , repeat the last f, F, t, or T n times in opposite direction

1.2 Up-down motions

[n] k up n lines (also: CTRL-P and ")

[n] j down n lines (also: CTRL-J , CTRL-N , NL , and #)

[n] { up n lines, on the �rst non-blank character
[n] + down n lines, on the �rst non-blank character (also: CTRL-M and Ret)

[n] down n-1 lines, on the �rst non-blank character
[n] G goto line n (default: last line), on the �rst non-blank character
[n] gg goto line n (default: �rst line), on the �rst non-blank character
n % goto line n percentage down in the �le. n must be given, otherwise it is the % command
[n] gk or g " up n screen lines (di�ers from k when line wraps, and when used with an operator, because

it's not linewise.)
[n] gj or g # down n screen lines (di�ers from j when line wraps, and when used with an operator, because

it's not linewise.)
:[range]go[to] [count] Go to count byte in the bu�er. Default count is zero, start of the �le. When

giving range, the last number in it used. End-of-line characters are counted depending on the current
�leformat setting.

1.3 Text object motions

[n] w n words1

[n] W n blank-separated WORDS forward
[n] e forward to the end of the n-th word

[n] E forward to the end of the n-th blank-separated WORD

[n] b n words backward
[n] B n blank-separated WORDS backward
[n] ge backward to the end of the n-th word

[n] gE backward to the end of the n-th blank-separated WORD

[n]) n sentences forward
[n] (n sentences backward
[n] g n paragraphs forward
[n] f n paragraphs backward
[n]]] n sections forward, at start of section
[n] [[n sections backward, at start of section
[n]][n sections forward, at end of section
[n] [] n sections backward, at end of section
[n] [(n times back to unclosed (

1For de�nition of word, WORD, sentence, paragraph and section see Section 2.11

1 MOVEMENT COMMANDS 4

[n] [f n times back to unclosed f
[n]]) n times forward to unclosed)
[n]]g n times forward to unclosed g
[n] [# n times back to unclosed #if or #else
[n]]# n times forward to unclosed #else or #endif
[n] [* n times back to start of comment /*
[n]]* n times forward to end of comment */

1.4 Scrolling

[n] CTRL-E window n lines downwards (default: 1)

[n] CTRL-D window n lines Downwards (default: 1/2 window)

[n] CTRL-F window n pages Forwards (downwards)

[n] CTRL-Y window n lines upwards (default: 1)

[n] CTRL-U window n lines Upwards (default: 1/2 window)

[n] CTRL-B window n pages Backwards (upwards)

z Ret or zt redraw, current line at top of window
z. or zz redraw, current line at center of window
z{ or zb redraw, current line at bottom of window
[n] zh scroll screen n characters to the right
[n] zl scroll screen n characters to the left
[n] zH scroll screen half a screenwidth to the right
[n] zL scroll screen half a screenwidth to the left

1.5 Various motions

% �nd the next brace, bracket, comment, or #if/#else/#endif
in this line and go to its match

[n] H go to the n-th line in the window, on the �rst non-blank
M go to the middle line in the window, on the �rst non-blank
[n] L go to the n-th line from the bottom, on the �rst non-blank
[n] go go to n-th byte in the bu�er
:[range]go[to] [o�] go to [o�]set byte in the bu�er

1.6 Marks and motions

mfa-zA-Zg mark current position with mark fa-zA-Zg
`fa-zg go to mark fa-zg within current �le
`fA-Zg go to mark fA-Zg in any �le
`f0-9g go to the position where VIM was last exited
\ go to the position before the last jump
`" go to the position when last editing this �le
`[go to the start of the previously operated or put text
`] go to the end of the previously operated or put text
`< go to the start of the (previous) Visual area
`> go to the end of the (previous) Visual area
'fa-zA-Z0-9[]'"<>g same as `, but on the �rst non-blank in the line
:marks display the active marks
[n] CTRL-O go to n-th older position in jump list

[n] CTRL-I go to n-th newer position in jump list

:ju[mps] display the jump list

1.7 Using tags

:ta[g][!] tag jump to tag
:[n] ta[g][!] jump to n-th newer tag in tag list
CTRL-] jump to the tag under cursor, unless changes have been made

[n] CTRL-T jump back from n-th older tag in tag list

:tj[ump][!] [tag] Jump to tag tag or select from list when there are multiple matches
:ts[elect][!] [tag] list matching tags and select one to jump to

2 EDITING COMMANDS 5

:[n] tn[ext][!] jump to n-th next matching tag
:[n] tp[revious][!] jump to n-th previous matching tag
:[n] tr[ewind][!] jump to n-th matching tag
:[n] po[p][!] jump back from n-th older tag in tag list
:tags print tag list
:pt[ag] tag open a preview window to show tag tag
CTRL-W g like CTRL-] but show tag in preview window

:pts[elect] like :tselect but show tag in preview window
:ptj[ump] like :tjump but show tag in preview window
:pc[lose] close tag preview window
CTRL-W z close tag preview window

2 Editing Commands

2.1 Inserting text

[n] a append text after the cursor (n times)
[n] A append text at the end of the line (n times)
[n] i insert text before the cursor (n times) (also: Ins)

[n] I insert text before the �rst non-blank in the line (n times)
[n] gI insert text in column 1 (n times)
[n] o open a new line below the current line, append text (n times)
[n] O open a new line above the current line, append text (n times)

2.2 Keys in Insert mode

char action in Insert mode2

Esc end Insert mode, back to Normal mode

CTRL-C like Esc , but do not complete an abbreviation begun

CTRL-A insert previously inserted text

CTRL-@ insert previously inserted text and stop insert

CTRL-O command execute command and return to Insert mode

CTRL-R f0-9a-z%#:.-="*g insert the contents of a register3 ,

NL or Ret or CTRL-M or CTRL-J begin new line

CTRL-E insert the character from below the cursor

CTRL-Y insert the character from above the cursor

CTRL-V char insert character literally, or enter decimal byte value

CTRL-N insert next match of identi�er before the cursor

CTRL-P insert previous match of identi�er before the cursor

CTRL-X . . . complete the word before the cursor in various ways:

CTRL-X CTRL-D complete the de�nition or macro

CTRL-X CTRL-F complete the �le name

CTRL-X CTRL-I complete the word searching the current and included �les.

CTRL-X CTRL-K complete the word using dictionary �les.

CTRL-X CTRL-L complete the whole line searching the current �le

CTRL-X CTRL-N complete the word searching the current �le

CTRL-X CTRL-] complete the tag

BS or CTRL-H delete the character before the cursor

Del delete the character under the cursor

CTRL-W delete word before the cursor

CTRL-U delete all entered characters in the current line

CTRL-T insert one shiftwidth of indent in front of the current line

CTRL-D delete one shiftwidth of indent in front of the current line

0 CTRL-D delete all indent in the current line

2See Section 13.1 for description of VIM modes
3See Section 13.2 for description of VIM registers

2 EDITING COMMANDS 6

b CTRL-D delete all indent in the current line, restore indent in next line

2.3 Special keys in Insert mode

cursor keys move cursor left/right/up/down
SHIFT- / SHIFT-! one word left/right

SHIFT-" / SHIFT-# one screenful backward/forward

CTRL-O command execute command

End cursor after last character in the line

Home cursor to �rst character in the line

2.4 Digraphs,

Digraphs are used to enter characters that normally cannot be entered by an ordinary keyboard. These
are mostly accented characters which have the eighth bit set.

:dig[raphs] show current list of digraphs
:dig[raphs] char1 char2 number . . . add digraph(s) to the list
CTRL-K char1 [char2] enter digraph

char1 BS char2 enter digraph if digraph option set

2.5 Special inserts

:r �le insert the contents of �le below the cursor
:r! command insert the standard output of command below the cursor

2.6 Deleting text

["x] [n] x delete n [into register "x] characters under and after the cursor
["x] [n] Del delete n [into register "x] characters under and after the cursor

["x] [n] X delete n [into register "x] characters before the cursor
["x] [n] d motion delete [into register "x] the text that is moved over with motion4

visual ["x] d delete [into register "x] the highlighted text
["x] [n] dd delete n [into register "x] lines
["x] [n] D delete [into register "x] to hEOLi (and n-1 more lines)
[n] J join n-1 lines (delete hEOLi)
[n] :j[oin][!] same as J, except with [!] the join does not insert or delete any spaces.
visual J join the highlighted lines
[n] gJ like J, but without inserting spaces
visual gJ like visual J, but without inserting spaces
:[range] d [x] delete range lines [into register x]

2.7 Copying and moving text

:reg show the contents of all registers
:reg arg show the contents of registers mentioned in arg
[n] ["x] y motion yank the text moved over with motion into a register ["x]
visual ["x] y yank the highlighted text into a register ["x]
["x] [n] yy yank n lines into a register ["x]
["x] [n] Y yank n lines into a register ["x]
["x] [n] p put a register ["x] after the cursor position (n times)
["x] gp like p but leave the cursor just after the new text., the cursor position (n times)
["x] [n] P put a register ["x] before the cursor position (n times)
["x] gP like P but leave the cursor just after the new text.,
["x]] MiddleMouse like p, but adjust indent to current line

["x] [n]]p like p, but adjust indent to current line
["x] [n] [p like P, but adjust indent to current line

4for de�nition of motion see Section 1.3

2 EDITING COMMANDS 7

2.8 Changing text

[n] R enter Replace mode (repeat the entered text n times)
gR Enter Virtual replace mode: Each character you type replaces existing characters in screen space.
[n] c motion delete motion text [into register \x"] and start insert.
visual c change the highlighted text
[n] cc change n lines
[n] S change n lines
[n] C change to the end of the line (and n-1 more lines)
[n] s change n characters
grchar replace the virtual characters under the cursor with char. This replaces in screen space, not �le

space.
[n] r char replace n characters with char
[n] gr char replace n characters with char without a�ecting layout
[n] � switch case for n characters and advance cursor
visual � switch case for highlighted text
visual u make highlighted text lowercase
visual U make highlighted text uppercase
g� motion switch case for the text that is moved over with motion
[n] g�� or g�g� switch case of current line.,
gu motion make the text that is moved over with motion lowercase
gU motion make the text that is moved over with motion uppercase
[n] gugu or guu make current line uppercase.,.
g?motion Rot13 encode motion text.,
visualg? Rot13 encode the highlighted text.,
g?? Rot13 encode current line.,
[n] gUU or gUgU make current line uppercase.,
[n] CTRL-A add n to the number at or after the cursor

[n] CTRL-X subtract n from the number at or after the cursor

[n] < motion move the lines that are moved over with motion one shiftwidth left
[n] << move n lines one shiftwidth left
[n] > motion move the lines that are moved over with motion one shiftwidth right
[n] >> move n lines one shiftwidth right
gqq format the current line. ,
[n] gq motion format the lines that are moved over with motion to textwidth length
:[range] ce[nter] [width] center the lines in range
:[range] le[ft] [indent] left-align the lines in range with indent
:[range] ri[ght] [width] right-align the lines in range

2.9 Complex changes

[n] ! motion command Ret �lter the lines that are moved over through command

[n] !! command Ret �lter n lines through command

visual ! command Ret �lter the highlighted lines through command

:[range] !command Ret �lter range lines through command

[n] = motion �lter the lines that are moved over through indent
[n] == �lter n lines through indent
visual = �lter the highlighted lines through indent
:[range] s[ubstitute]/pattern/string/[c e g p r i I] [n] substitute pattern by string in range lines [n times];

with

c con�rm each replacement
e when the search pattern fails, do not issue an error message and, in particular, continue in

maps as if no error occurred
g replace all occurrences of pattern
i Ignore case for the pattern.
I Don't ignore case for the pattern.
p print the line containing the last substitute
r Only useful in combination with :& or :s without arguments. :&r works the same way as :�.

:[range] sno[magic] . . . same as :substitute, but always use nomagic.
:[range] sm[agic] . . . same as :substitute, but always use magic.

2 EDITING COMMANDS 8

Some characters in string have a special meaning:

magic nomagic action

& n& replaced with the whole matched pattern
n& & replaced with &
n0 n0 replaced with the whole matched pattern
n1 n1 replaced with the matched pattern in the �rst pair of ()
n2 n2 replaced with the matched pattern in the second pair of ()
...

...
n9 n9 replaced with the matched pattern in the ninth pair of ()
� n� replaced with the string of the previous substitute
n� � replaced with �
nu nu next character made uppercase
nU nU following characters made uppercase
nl nl next character made lowercase
nL nL following characters made lowercase
ne ne end of /u, /U, /l and /L (NOTE: not hEsci!)
nE nE end of /u, /U, /l and /L
hCRi hCRi split line in two at this point
nr nr idem

CTRL-V hCRi CTRL-V hCRi insert a carriage-return hCTRL-Mi

nn nn hNLi
nb nb hBSi
nt nt hTabi

:[range] &[c e g r i I] [n]
:[range] [range] s[ubstitute] [c e g r i I] [n] repeat previous :s [n times] with new range and options
:[range] �[c e g r i I] [n] repeat last substitute [n times] with same substitute string but with last used

search pattern.
& repeat previous :s on current line without options
:[range] ret[ab][!] [tabstop] set tabstop to new value and adjust white space accordingly

2.10 Visual mode,

v start or stop highlighting characters
V start or stop highlighting linewise
CTRL-V start or stop highlighting blockwise
o exchange cursor position with start of highlighting
gv start highlighting on previous visual area

Blockwise operators

Istring With a blockwise selection, Istring ESC will insert string at the start of block on every line of the
block, provided that the line extends into the block. TABs are split to retain visual columns.

Astring With a blockwise selection, Astring ESC will append string to the end of block on every line of
the block. There is some di�ering behavior where the block RHS is not straight, due to di�erent line
lengths.

c All selected text in the block will be replaced by the same text string. When using c the selected text is
deleted and Insert mode started. You can then enter text (without a line break). When you hit Esc ,
the same string is inserted in all previously selected lines.

C Like using c, but the selection is extended until the end of the line for all lines.
> or < The block is shifted by shiftwidth. The RHS of the block is irrelevant. The LHS of the block

determines the point from which to apply a right shift, and padding includes TABs optimally according
to ts and et. The LHS of the block determines the point upto which to shift left.

R Every screen char in the highlighted region is replaced with the same char, i.e. TABs are split and the
virtual whitespace is replaced, maintaining screen layout.

2 EDITING COMMANDS 9

Virtual Replace mode ,

Virtual replace mode (enter it with gR) is similar to Replace mode, but instead of replacing actual
characters in the �le, you are replacing screen real estate, so that characters further on in the �le never
appear to move.

This mode is very useful for editing hTabi separated columns in tables, for entering new data while
keeping all the columns aligned.

2.11 Text objects, (only in Visual mode or after an operator)

word a word consists of a sequence of letters, digits and underscores, or a sequence of other non-blank
characters, separated with white space (spaces, tabs, hEOLi). This can be changed with the iskeyword
option.

WORD a WORD consists of a sequence of non-blank characters, separated with white space. An empty line
is also considered to be a word and a WORD.

sentence a sentence is de�ned as ending at a \.", \!" or \?" followed by either the end of a line, or by
a space. Any number of closing \)", \]", \"" and \'" characters may appear after the \.", \!" or \?"
before the spaces or end of line. A paragraph and section boundary is also a sentence boundary.
The de�nition of a sentence cannot be changed.

paragraph a paragraph begins after each empty line, and also at each of a set of paragraph macros,
speci�ed by the pairs of characters in the paragraphs option. The default is \IPLPPPQPP LIpplpipbp",
which corresponds to the macros \.IP", \.LP", etc. (These are nroff macros, so the dot must be in
the �rst column). A section boundary is also a paragraph boundary. Note that this does not include
a \f" or \g" in the �rst column.

section a section begins after a form-feed (hC-Li) in the �rst column and at each of a set of section
macros, speci�ed by the pairs of characters in the sections option. The default is \SHNHH HUnhsh",
which de�nes a section to start at the nroff macros \.SH", \.NH", \.H", \.HU", \.nh" and \.sh".

[n] aw select a word

[n] iw select inner5 word
[n] aW select a WORD

[n] iW select inner WORD

[n] as select a sentence

[n] is select inner sentence

[n] ap select a paragraph

[n] ip select inner paragraph

[n] a[or a] select [n] \[" \]" blocks.
[n] i[or i] select [n] inner \[" \]" blocks.
[n] a), a(or ab select a block (from (to))
[n] i), i(or ib select inner block(from (to))
[n] a< or a> select [n] <> blocks.
[n] i< or i> select [n] <>inner blocks

[n] ag, af or aB select a Block (from f to g)
[n] ig, if or iB select inner Block (from f to g)

2.12 Repeating Commands

[n] . repeat last change (with n replaced with n)
qfa-zg , record typed characters into register fa-zg
qfA-Zg , record typed characters, appended to register fa-zg
q , stop recording
[n] @fa-zg execute the contents of register fa-zg (n times)
[n] @@ , repeat previous @fa-zg (n times)
:@fa-zg , execute the contents of register fa-zg as an Ex command
:@@ repeat previous :@fa-zg
:[range] g[lobal]/pattern/[cmd] execute Ex command cmd (default: :p) on the lines

within [range] where pattern matches
:[range] g[lobal]!/pattern/[cmd] execute Ex command cmd (default: :p) on the lines

within [range] where pattern does NOT match
:so[urce] �le read Ex commands from �le

5\inner" means that white spaces between words are included in count n

2 EDITING COMMANDS 10

:so[urce]! �le read VIM commands from �le
:[n] sl[eep] n [m] don't do anything for n seconds. If m is included, sleep for n milliseconds.
[n] gs goto Sleep for n seconds

2.13 Undo/Redo Commands

[n] u , undo last n changes
[n] CTRL-R , redo last n undone changes
U restore last changed line

2.14 Command-line editing

Esc abandon command-line (if wildchar is Esc , type it twice)

CTRL-V char insert char literally

CTRL-V number enter decimal value of character (up to three digits)

CTRL-K char1 char2 , enter digraph

CTRL-R f0-9a-z"%#:-=*g insert the contents of a register6

CTRL-R CTRL-R f0-9a-z"%#:-=*g insert the contents of a register. Works like using a single CTRL-R ,
but the text is inserted literally, not as if typed. This di�ers when the register contains characters like
hBSi.

 /! cursor left/right

SHIFT- / SHIFT-! cursor one word left/right

CTRL-B / CTRL-E cursor to beginning/end of command-line

BS delete the character in front of the cursor

Del delete the character under the cursor

CTRL-W delete the word in front of the cursor

CTRL-U remove all characters

" / # recall older/newer command-line that starts with current command

SHIFT-" / SHIFT-# recall older/newer command-line from history

:his[tory][name] [�rst][, [last] List the contents of history name which can be:

c[md] or : command-line history
s[earch] or / search string history
e[xpr] or = expression register history
i[nput] or @ input line history
a[ll] all of the above

Context-sensitive completion on the command-line: ,
wildchar (default: Tab) do completion on the pattern in front of the cursor. If there are multiple matches,

beep and show the �rst one; further wildchar will show the next ones
CTRL-A insert all names that match pattern in front of cursor

CTRL-D list all names that match the pattern in front of the cursor

CTRL-L insert longest common part of names that match pattern

CTRL-N after wildchar with multiple matches: go to next match

CTRL-P after wildchar with multiple matches: go to previous match

CTRL-R . . . insert the object under the cursor:

CTRL-F the \�lename" under the cursor

CTRL-P the \�lename" under the cursor, expanded with path

CTRL-W the \word" under the cursor

CTRL-A the \WORD" under the cursor

2.15 Encryption

Vim is able to write �les encrypted, and read them back. The encrypted text cannot be read without
the right key. The normal way to work with encryption, is to use the :X command, which will ask you to
enter a key. A following write command will use that key to encrypt the �le. If you later edit the same �le,
Vim will ask you to enter a key. The algorithm used is breakable.

6See Section 13.2 for description of VIM registers

3 KEY MAPPINGS ABBREVIATIONS 11

Warning: The swap�le and text in memory are not encrypted. A system administrator will be able to
see your text while you are editing it. Text you copy or delete goes to the numbered registers. The registers
can be saved in the \.viminfo" �le, where they could be read. Change your viminfo option to be safe. If
you make a typo when entering the key and then write the �le and exit, the text will be lost!

:X Prompt for an encryption key. The typing is done without showing the actual text, so that someone
looking at the display won't see it. The typed key is stored in the key option, which is used to encrypt
the �le when it is written.

3 Key Mappings Abbreviations

3.1 Key mapping

These commands are used to map a key or key sequence to a string of characters. There are �ve sets of
mappings:

Normal mode: when typing commands. (e.g. :map <F3> o#include)
Visual mode: when typing commands while the Visual area is highlighted.
Operator-pending mode: when an operator is pending (after \d", \y", \c", etc.).
Insert mode: these are also used in Replace mode.
Command-line mode: when entering a \:" or \/" command.

Everything from the �rst non-blank after lhs up to the end of the line hEOLi (or \j") is considered to
be part of rhs. Inclusion of lhs in rhs results in a recursive mapping. Recursion depth is controlled by
maxmapdepth option. Use \nore" versions of mapping commands to avoid recursion.

:ma[p] lhs rhs map lhs to rhs in Normal and Visual mode
:ma[p]! lhs rhs map lhs to rhs in Insert and Command-line mode
:no[remap][!] lhs rhs same as :map, no remapping for is rhs
:unm[ap] lhs remove the mapping of lhs for Normal and Visual mode
:unm[ap]! lhs remove the mapping of lhs for Insert and Command-line mode
:ma[p] [lhs] list mappings (starting with lhs) for Normal and Visual mode
:ma[p]! [lhs] list mappings (starting with lhs) for Insert and Command-line mode
:cmap/:cunmap/:cnoremap like :map!/:unmap!/:noremap! but for Command-line mode only
:imap/:iunmap/:inoremap like :map!/:unmap!/:noremap! but for Insert mode only
:nmap/:nunmap/:nnoremap like :map/:unmap/:noremap but for Normal mode only
:vmap/:vunmap/:vnoremap like :map/:unmap/:noremap but for Visual mode only
:omap/:ounmap/:onoremap like :map/:unmap/:noremap but only for when an operator is pending
:mk[exrc][!] �le , write current mappings, abbreviations, and settings to �le

(default: .exrc; use ! to overwrite)
:mkv[imrc][!] �le , same as :mkexrc, but with default .vimrc
:mks[ession][!] [�le] like :mkvimrc, but store current �les and directory too
:mapc[lear] remove mappings for Normal and Visual mode
:mapc[lear]! remove mappings for Insert and Cmdline mode
:imapc[lear] remove mappings for Insert mode
:vmapc[lear] remove mappings for Visual mode
:omapc[lear] remove mappings for Operator-pending mode
:nmapc[lear] remove mappings for Normal mode
:cmapc[lear] remove mappings for Cmdline mode

3.2 Abbreviations

Abbreviations are used in Insert, Replace and Command-line modes. Abbreviations are never recursive.
There are three types of abbreviations:

full-id this type consists entirely of keyword characters (letters and characters from iskeyword option).
(e.g. foo, g3, -1)

end-id this type ends in a keyword character, but all the other characters are not keyword characters.(e.g.
#i, ..f, $/7)

non-id , this type ends in a non-keyword character, the other characters may be of any type, excluding
hSpacei and hTabi. (e.g. def#, 4/7$)

:ab[breviate] lhs rhs add abbreviation for lhs to rhs

3 KEY MAPPINGS ABBREVIATIONS 12

:ab[breviate] lhs show abbreviations that start with lhs
:ab[breviate] show all abbreviations
:una[bbreviate] lhs remove abbreviation for lhs
:norea[bbrev] [lhs] [rhs] like :ab, but don't remap rhs
:iab/:iunab/:inoreab like :ab, but only for Insert mode
:cab/:cunab/:cnoreab like :ab, but only for Command-line mode
:abc[lear] remove all abbreviations
:cabc[lear] remove all abbreviations for Cmdline mode
:iabc[lear] remove all abbreviations for Insert mode

3.3 User-de�ned commands,

It is possible to de�ne your own Ex commands. A user-de�ned command can act just like a built-
in command, except that when the command is executed, it is transformed into a normal Ex command
and then executed. All user de�ned commands must start with an uppercase letter, to avoid confusion
with builtin commands. User-de�ned commands can have arguments, which are subject to completion as
�lenames, bu�ers, etc. Exactly how this works depends upon the command's attributes, which are speci�ed
when the command is de�ned.

:com[mand] list all user-de�ned commands. When listing commands, the characters in the �rst two
columns are

! Command has the -bang attribute
" Command has the -register attribute

:com[mand] cmd list the user-de�ned commands that start with cmd
:com[mand][!] [attr . . .] cmd rep de�ne a user command. The name of the command is cmd and its

replacement text is rep. The command's attributes (see below) are attr. If the command already exists,
an error is reported, unless a ! is speci�ed, when the command is rede�ned.

:delc[ommand] cmd delete the user-de�ned command cmd.
:comc[lear] delete all user-de�ned commands.

Command attributes

Command attributes split into four categories:
1. argument handling: -nargs=char, where char can be 0,1, *, ? or +
2. completion behaviour: -complete=word, where word can be any of the following: augroup buffer

command dir event file help highlight menu option tag

3. range handling: -range=n,% or -count=n
4. special cases: -bang { the command can take a ! modi�er, -register { the �rst argument to the

command can be an optional register name

Replacement text

The replacement text for a user-de�ned command is scanned for special escape sequences, using <. . .>
notation. Escape sequences are replaced with values from the entered command line, and all other text is
copied unchanged. The resulting string is executed as an Ex command. The valid escape sequences are

<line1> The starting line of the command range
<line2> The �nal line of the command range
<count> Any count supplied
<bang> Expands to a !, if speci�ed
<reg> The optional register, if speci�ed
<args> The command arguments, exactly as supplied
<lt> A single < character

Example

1 " Rename the current buffer

2 :com -nargs=1 -bang -complete=file Ren f <args>|w<bang>

3 " Replace a range with the contents of a file

4 " (Enter this all as one line)

5 :com -range -nargs=1 -complete=file

6 Replace <line1>-pu_|<line1>,<line2>d|r <args>|<line1>d

4 OPTIONS 13

4 Options

4.1 Setting Options

:se[t] show all modi�ed options
:se[t] all , show all options
:se[t] option toggle option on, show string or number option
:se[t] nooption toggle option o�
:se[t] invoption , invert option
:se[t] option= value set string or number option to value
:se[t] option? show value of option
:se[t] option+=value Add the value to a number option, or concatenate the value to a string option.
:se[t] optionb=value Multiply the value to a number option, or prepend the value to a string option.
:se[t] option-=value Subtract the value from a number option, or remove the value from a string option,

if it is there.
:se[t] option& reset option to its default value ,
:�x[del] , set value of \t kD" according to value of \ t kb"

4.2 Short explanation of each option:

in () { an abbreviated version

aleph (al) , ASCII code of the letter Aleph (Hebrew)
allowrevins (ari) , Allow CTRL- in Insert and Command-line mode. See revins
altkeymap (akm) , for default second language (Farsi/Hebrew)
autoindent (ai) take indent for new line from previous line
autowrite (aw) automatically write �le if changed
background (bg) , \dark" or \light", used for highlight colors
backspace (bs) , how backspace works at start of line
backup (bk) , keep backup �le after overwriting a �le
backupdir (bdir) , list of directories for the backup �le
backupext (bex) , extension used for the backup �le
binary (bin) , edit binary �le mode
bioskey (biosk) , MS-DOS: use bios calls for input characters
breakat (brk) , characters that may cause a line break
browsedir (bsdir) , (only for GUI) which directory to start browsing in
cindent (cin) , do C program indenting
cinkeys (cink) , keys that trigger indent when cindent is set
cinoptions (cino) , how to do indenting when cindent is set
cinwords (cinw) , words where si and cin add an indent
cmdheight (ch) , number of lines to use for the command-line
columns (co) , number of columns in the display
comments (com) , patterns that can start a comment line
compatible (cp) , behave Vi-compatible as much as possible
complete (cpt) , specify how Insert mode completion works
con�rm (cf) , con�rm certain operations that would normally fail because of unsaved changes to a

bu�er
conskey (consk) , get keys directly from console (MS-DOS only)
cpoptions (cpo) ,
ags for Vi-compatible behaviour
cscopeprg (csprg) , command to execute cscope
cscopetag (cst) , use cscope for tag commands
cscopetagorder (csto) , determines :cstag search order
cscopeverbose (csverb) , give messages when adding a cscope database
de�ne (def) , pattern to be used to �nd a macro de�nition
dictionary (dict) , list of �le names used for keyword completion
digraph (dg) , enable the entering of digraphs in Insert mode
directory (dir) list of directory names for the swap �le
display (dy) list of
ags for how to display text
edcompatible (ed) , toggle
ags of :substitute command
endo
ine (eol) , write hEOLi for last line in �le
equalalways (ea) , windows are automatically made the same size
equalprg (ep) , external program to use for = command

4 OPTIONS 14

errorbells (eb) ring the bell for error messages
error�le (ef) , name of the \error�le" for the QuickFix mode
errorformat (efm) , description of the lines in the error �le
esckeys (ek) , recognize function keys in Insert mode
eventignore (ei) , a list of autocommand event names, which are to be ignored
expandtab (et) , use spaces when Tab is inserted

exrc (ex) , read .vimrc and .exrc in the current directory
�leencoding (fe) �le encoding for multi-byte text
�leformat (�) , �le format used for �le I/O
�leformats (�s) , automatically detected values for �leformat
�letype (ft) , type of �le, used for autocommands
fkmap (fk) , Farsi keyboard mapping
formatoptions (fo) , how automatic formatting is to be done
formatprg (fp) , name of external program used with gq command
gdefault (gd) , the :substitute
ag g is default on
grepformat (gfm) , format of grepprg output
grepprg (gp) , program to use for :grep
guicursor (gcr) , GUI: settings for cursor shape and blinking
guifont (gfn) , GUI: Name(s) of font(s) to be used
guifontset (gfs), GUI: Names of multi-byte fonts to be used
guiheadroom (ghr), GUI: pixels room for window decorations
guioptions (go) , GUI: Which components and options are used
guipty , GUI: try to use a pseudo-tty for :! commands
help�le (hf) , name of this help �le
helpheight (hh) , minimum height of a new help window
hidden (hid) , don't unload bu�er when it is abandoned
highlight (hl) , sets highlighting mode for various occasions
hlsearch (hls) , highlight matches with last search pattern
history (hi) , number of command-lines that are remembered
hkmapp (hkp) , Hebrew keyboard mapping
icon , set icon of the window to the name of the �le
iconstring , string to use for the VIM icon
ignorecase (ic) ignore case in search patterns
include (inc) , pattern to be used to �nd an include �le
incsearch (is) , highlight match while typing search pattern
infercase (inf) , adjust case of match for keyword completion
insertmode (im) , start the edit of a �le in Insert mode
isfname (isf) , characters included in �le names and pathnames
isident (isi) , characters included in identi�ers
isprint (isp) , printable characters
iskeyword (isk) , characters included in keywords
joinspaces (js) , two spaces after a period with a join command
key , encryption key
keymodel (km) , enable starting/stopping selection with keys
keywordprg (kp) , program to use for the K command
langmap (lmap) , alphabetic characters for other language mode
laststatus (ls) , tells when last window has status lines
lazyredraw (lz) , don't redraw while executing macros
linebreak (lbr) , wrap long lines at a blank
lines number of lines in the display
lisp automatic indenting for Lisp
list show Tab and hEOLi

listchars (lcs) , characters for displaying in list mode
magic changes special characters in search patterns
makeef (mef) , name of the error�le for :make
makeprg (mp) , program to use for the :make command
matchpairs (mps), pairs of characters that \%" can match
matchtime (mat) , tenths of a second to show the matching parenthesis,

when showmatch is set
maxfuncdepth (mfd) , maximum recursive depth for user functions
maxmapdepth (mmd) , maximum recursive depth for mapping

4 OPTIONS 15

maxmem (mm) , maximum memory (in Kbyte) used for one bu�er
maxmemtot (mmt) , maximum memory (in Kbyte) used for all bu�ers
modeline (ml) recognize modelines at start or end of �le
modelines (mls) , number of lines checked for modelines
modi�ed (mod) , bu�er has been modi�ed
more , pause listings when the whole screen is �lled
mouse , enable the use of mouse clicks
mousefocus (mousef) , keyboard focus follows the mouse
mousehide (mh) , hide mouse pointer while typing
mousemodel (mousem) , changes meaning of mouse buttons
mousetime (mouset) , max time between mouse double-click
nrformats (nf) , number formats recognized for CTRL-A command

number (nu) print the line number in front of each line
os�letype (oft), operating system-speci�c �letype information
paragraphs (para) nro� macros that separate paragraphs
paste , allow pasting text
pastetoggle (pt), key code that causes paste to toggle
patchmode (pm) , keep the oldest version of a �le
path (pa) , list of directories searched with gf et al
previewheight (pvh), height of the preview window
readonly (ro) , disallow writing the bu�er
remap allow mappings to work recursively
report threshold for reporting number of lines changed
restorescreen (rs) , Win32: restore screen when exiting
revins (ri) , inserting characters will work backwards
rightleft(rl) , window is right-to-left oriented
ruler (ru) , show cursor line and column in the status line
rulerformat (ruf), custom format for the ruler
scroll (scr) lines to scroll with CTRL-U and CTRL-D

scrollbind (scb), scroll in window as other windows scroll
scrolljump (sj) , minimum number of lines to scroll
scrollo� (so) , minimum number of lines above and below cursor
scrollopt (sbo), how scrollbind should behave
sections (sect) nro� macros that separate sections
secure , secure mode for reading .vimrc in current dir
selection (sel) , what type of selection to use
selectmode (slm) , when to use Select mode instead of Visual mode
sessionoptions (ssop) , options for :mksession
shell (sh) name of shell to use for external commands
shellcmd
ag (shcf) ,
ag to shell to execute one command
shellpipe (sp) , string to put output of :make in error �le
shellquote (shq) , quote character(s) for around shell command
shellredir (srr) , string to put output of �lter in a temp �le
shellslash (ssl), use forward slash for shell �le names
shelltype (st) , Amiga: in
uences how to use a shell
shellxquote (sxq) , like shellquote, but include redirection
shiftround (sr) , round indent to multiple of shiftwidth
shiftwidth (sw) number of spaces to use for (auto)indent step
shortmess (shm) , list of
ags, reduce length of messages
shortname (sn) non-MS-DOS: Filenames assumed to be 8.3 chars
showbreak (sbr) , string to use at the start of wrapped lines
showcmd (sc) show (partial) command in status line
showfulltag (sft) , show full tag pattern when completing tag
showmatch (sm) brie
y jump to matching bracket if insert one
showmode (smd) message on status line to show current mode
sidescroll (ss) , minimum number of columns to scroll horizontal
smartcase (scs) , no ignore case when pattern has uppercase
smartindent (si) , smart autoindenting for C programs
smarttab (sta) , use shiftwidth when inserting Tab

softtabstop (sts) , number of spaces that Tab uses while editing

4 OPTIONS 16

splitbelow (sb) , new window from split is below the current one
starto
ine (sol) , commands move cursor to �rst blank in line
statusline (stl), custom format for the status line
suÆxes (su) , suÆxes that are ignored with multiple match
swap�le (swf) , whether to use a swap�le for a bu�er
swapsync (sws) , how to sync the swap �le
switchbuf (swb), sets behavior when switching to another bu�er
syntax (syn) , syntax to be loaded for current bu�er
tabstop (ts) number of spaces that Tab in �le uses

tagbsearch (tbs), use binary searching in tags �les
taglength (tl) number of signi�cant characters for a tag
tagrelative (tr) , �le names in tag �le are relative
tags (tag) list of �le names used by the tag command
tagstack (tgst), push tags onto the tag stack
term name of the terminal
terse , shorten some messages
textauto (ta) , obsolete, use �leformats
textmode (tx) , obsolete, use �leformat
textwidth (tw) , maximum width of text that is being inserted
tildeop (top) , tilde command � behaves like an operator
timeout (to) time-out on mappings and key codes
timeoutlen (tm) time-out time in milliseconds
title , set title of window to the name of the �le
titlelen (tm) , gives the percentage of \columns" to use for the length of the window title
titleold , old title, restored when exiting
titlestring , title to use for the VIM window
toolbar (tb), GUI: which items to show in the toolbar
ttimeout , time-out on mappings
ttimeoutlen (ttm) , time-out time for key codes in milliseconds
ttybuiltin (tbi) , use built-in termcap before external termcap
ttyfast (tf) , indicates a fast terminal connection
ttymouse (ttym) , type of mouse codes generated
ttyscroll (tsl) maximum number of lines for a scroll
ttytype (tty) alias for term
undolevels (ul) , maximum number of changes that can be undone
updatecount (uc) , after this many characters
ush swap �le
updatetime (ut) , after this many milliseconds
ush swap �le
verbose (vbs) , give informative messages
viminfo (vi) , use .viminfo�le upon startup and exiting
visualbell (vb) , use visual bell instead of beeping
warn warn for shell command when bu�er was changed
weirdinvert (wi) , for terminals that have weird inversion method
whichwrap (ww) , allow speci�ed keys to cross line boundaries
wildchar (wc) , command-line character for wildcard expansion
wildcharm (wcm), like wildchar but also works when mapped
winheight (wh) , minimum number of lines for
wildignore (wig) , �les matching these patterns are not completed
wildmenu (wmnu), use menu for command line completion
wildmode (wim) , mode for wilchar command-line expansion
winaltkeys (wak) , when the windows system handles ALT keys the current window
winminheight (wmh) , minimum number of lines for any window
wrap , long lines wrap and continue on the next line
wrapmargin (wm) chars from the right where wrapping starts
wrapscan (ws) searches wrap around the end of the �le
write , writing to a �le is allowed
writeany (wa) write to �le with no need for ! override
writebackup (wb) , make a backup before overwriting a �le
writedelay (wd) , delay this many msec for each char (for debug)

5 OTHER COMMANDS 17

5 Other Commands

5.1 Shell Commands

:sh[ell] start a shell
:! command execute command with a shell
K lookup keyword under the cursor with keywordprg program (default: \man")

5.2 QuickFix Commands,

VIM has a special mode to speedup the edit-compile-edit cycle. The idea is to save the error messages
from the compiler in a �le and use VIM to jump to the errors one by one. The errorformat option should
be set to match the error messages from your compiler (see below).

:cc[!] [num] display error num (default is the same again). Without \!" this doesn't work when jumping
to another bu�er, the current bu�er has been changed, there is the only window for the bu�er and both
hidden and autowrite are o�. When jumping to another bu�er with \!" any changes to the current
bu�er are lost, unless hidden is set or there is another window for this bu�er.

:[n]cn[ext][!] display the n next error in the list that includes a �le name. If there are no �le names at all,
go to the n next error. See :cc for \!".

:[n]cp[revious][!] display the n previous error in the list that includes a �le name. If there are no �le names
at all, go to the n previous error.

:[n]cnf[ile][!] display the �rst error in the n next �le in the list that includes a �le name. If there are no
�le names at all or if there is no next �le, go to the n next error.

:cl[ist] [from] [, [to]] list all errors that include a �lename
:cl[ist]! list all errors
:cf read errors from the �le \error�le"
:cr[ewind][!] [nr] display error [nr]. If nr is omitted, the FIRST error is displayed.
:cla[st][!] [nr] display error [nr]. If nr is omitted, the LAST error is displayed.
:cq quit without writing and return error code (to the compiler)
:make [args] start make, read errors, and jump to �rst error
:gr[ep] [args] execute grepprg to �nd matches and jump to the �rst one.
:col[der] [n] go to older error list [n times].
:cnew[er] [n] go to newer error list [n times].

Errorformat option syntax

Spec Description Spec Description

%c column number (a number) %f �le name (a string)
%l line number (a number) %m error message (a string)
%n error number (a number) %r matches the rest of a singleline

�le message
%t error type (single character) %*<conv> any scanf non-assignable

conversion
%% the single \%" character

5.3 Viminfo Commands,

The viminfo �le is used to store:
� The command line history.
� The search string history.
� The input-line history.
� Contents of registers.
� Marks for several �les.
� File marks, pointing to locations in �les.
� Last search/substitute pattern (for \n" and \&").
� The bu�er list.
� Global variables.

viminfo �le read registers, marks, history at startup, save when exiting
:rv[iminfo] �le read info from viminfo �le �le

5 OTHER COMMANDS 18

:rv[iminfo]! �le idem, overwrite existing info
:wv[iminfo] �le add info to viminfo �le �le
:wv[iminfo]! �le write info to viminfo �le �le

Viminfo option syntax

The format of \viminfo" string: char string or char number, where char can be:

' { maximum number of previously edited �les for which the marks are remembered.
f { whether �le marks need to be stored. If zero, �le marks ('0 to '9, 'A to 'Z) are not stored. When

not present or when non-zero, they are all stored.
r { removable media. The argument is a string (up to the next \,"). This parameter can be given

several times. Each speci�es the start of a path for which no marks will be stored. Maximum
length of each \r" argument is 50 characters.

� { maximum number of lines saved for each register. If zero then registers are not saved. When
not included, all lines are saved.

: { maximum number of items in the command line history to be saved. When not included, the
value of history is used.

/ { maximum number of items in the search pattern history to be saved. If non-zero, then the
previous search and substitute patterns are also saved. When not included, the value of history
is used.

n { name of the viminfo �le. The name must immediately follow the \n". Must be the last one! If
the \-i" argument was given when starting Vim, that �le name overrides the one given here with
viminfo. Environment variables are expanded when opening the �le, not when setting the option.

% { save and restore the bu�er list. If Vim is started with a �le name argument, the bu�er list is
not restored. If Vim is started without a �le name argument, the bu�er list is restored from the
viminfo �le. Bu�ers without a �le name and bu�ers for help �les are not written to the viminfo
�le.

Automatic option setting when editing a �le
vim:set-arg: .. in the �rst and last lines of the �le (see ml option), set-arg is given as an argument to :set

5.4 Various Commands

:h[elp] , split the window and display the help �le in read-only mode. If there is a help window open
already, use that one

:h[elp] subject Like :help, additionally jump to the tag subject. subject can include wildcards like *", \?"
and \[a-z]"

CTRL-L clear and redraw the screen

CTRL-G show current �le name (with path) and cursor position
ga show ASCII value of character under cursor in decimal, hex, and octal
g CTRL-G show cursor column, line, and character position

CTRL-C during searches: interrupt the search

CTRL-B break MS-DOS: during searches: interrupt the search

n Del while entering count n: delete last character

:ve[rsion] show version information
:mode n MS-DOS: set screen mode to n (number, C80, C4350, etc.)
:norm[al][!] commands execute Normal mode commands
Q switch to Ex mode
:redir >�le redirect messages to �le
:redir >>�le redirect messages to �le. Append if �le already exists
:redi[r] @a-zA-Z redirect message to register a-z. Append to the contents of the register if its name is

given uppercase A-Z,
:redi[r] END end redirecting messages ,
:[range] p[rint] [n] print n lines, starting with range
:[range] l[ist] [n] same as :print, but display unprintable characters

6 EX RANGES AND SEARCH PATTERNS 19

6 Ex ranges and search patterns

6.1 Ranges

, separates two line numbers
; idem, set cursor to the �rst line number before interpreting the second one
number an absolute line number
. the current line
$ the last line in the �le
% equal to 1,$ (the entire �le)
* equal to '<,'> (visual area)
't position of mark t
/pattern[/] the next line where pattern matches
?pattern[?] the previous line where pattern matches
+[num] add num to the preceding line number (default: 1)
-[num] subtract num from the preceding line number (default: 1)

6.2 Special Ex characters

j separates two commands (not for :global and :!)
" begins comment
% current �le name (only where a �le name is expected)
#[number] alternate �le name number (only where a �le name is expected)

Note: The next six are typed literally; these are not special keys!
<cword> word under the cursor (only where a �le name is expected)
<cWORD> WORD under the cursor (only where a �le name is expected)
<cfile> filename under the cursor (only where a �le name is expected)
<afile> filename for autocommand (only where a �le name is expected)
<abuf> when executing autocommands, is replaced with the currently e�ective bu�er number.
<amatch> when executing autocommands, is replaced with the match for which this autocommand was

executed.
<sfile> filename of a :source'd �le, within that �le (only where a �le name is expected)

After %, #, <cfile>, <sfile> or <afile>

:p full path :h head (�le name removed)
:t tail (�le name only) :r root (extension removed)
:e extension :. reduce �le name to be relative to cur-

rent directory, if possible
:� reduce �le name to be relative to the

home directory, if possible
:s/pat/sub/ substitute pat with sub

6.3 Pattern searches

[n] /pattern[/o�set] Ret search forward for the n-th occurrence of pattern

[n] ?pattern[?o�set] Ret search backward for the n-th occurrence of pattern

[n] / Ret repeat last search, in the forward direction

[n] ? Ret repeat last search, in the backward direction

[n] n repeat last search
[n] N repeat last search, in opposite direction
[n] * , search forward for the identi�er under the cursor
[n] # , search backward for the identi�er under the cursor
[n] g* , like *, but also �nd partial matches
[n] g# , like #, but also �nd partial matches
gd , goto local declaration of identi�er under the cursor
gD , goto global declaration of identi�er under the cursor

6.4 Special characters in search patterns

magic7 nomagic meaning

. n. matches any single character

6 EX RANGES AND SEARCH PATTERNS 20

magic nomagic meaning

b b at beginning of pattern or after \n|" or \n(", matches start of line; at other
positions, matches literal \b"

nb nb at any position, matches literal \b"
$ $ matches hEOLi
n< n< matches start of word
n> n> matches end of word
[a-z] n[a-z] matches a single char from the range
[ba-z] n[ba-z] matches a single char not in the range
ni ni matches an identi�er char ,
nI nI idem but excluding digits ,
nk nk matches a keyword character ,
nK nK idem but excluding digits ,
nf nf matches a �le name character ,
nF nF idem but excluding digits ,
np np matches a printable character ,
nP nP idem but excluding digits ,
ns ns matches a white space character ,
nS nS matches a non-white space character ,
nd nd digit: [0-9] ,
nD nD non-digit: [b0-9] ,
nx nx hex digit: [0-9A-Fa-f] ,
nX nX non-hex digit: [b0-9A-Fa-f] ,
no no octal digit: [0-7] ,
nO nO non-octal digit: [b0-7] ,
nw nw word character: [0-9A-Za-z] ,
nW nW non-word character: [b0-9A-Za-z] ,
nh nh head-of-word character: [A-Za-z] ,
nH nH non-head-of-word character: [bA-Za-z] ,
na na alphabetic character: [A-Za-z] ,
nA nA non-alphabetic character: [bA-Za-z] ,
nl nl lowercase character: [a-z] ,
nL nL non-lowercase character: [ba-z] ,
nu nu uppercase character: [A-Z] ,
nU nU non-uppercase character: [bA-Z] ,

Note: using the atom is faster than the [] form

ne ne matches hEsci
nt nt matches hTabi
nr nr matches hReti
nb nb matches hBSi

nj nj separates two branches
n(n) n(n) group a pattern into an atom
� n� matches the last given substitute string

n1,n2,..,n9 n1,n2,..,n9 Matches the same string that was matched by the �rst, second .. ninth
sub-expression in n(and n).

Quanti�ers

* n* matches 0 or more of the preceding atom
n+ n+ matches 1 or more of the preceding atom ,

n= n= matches 0 or 1 of the preceding atom ,

nfn,mg nfn,mg matches n to m of the preceding atom, as much as possible ,
nfng nfng matches n of the preceding atom ,

nfn,g nfn,g matches at least n of the preceding atom, as much as possible ,
nf,mg nf,mg matches 0 to m of the preceding atom, as much as possible ,
nfg nfg the same as * ,

nf{n,mg nf{n,mg matches n to m of the preceding atom, as few as possible ,
nf{ng nf{ng matches n of the preceding atom ,

nf{n,g nf{n,g matches at least n of the preceding atom, as few as possible ,

7 STARTING, WRITING AND QUITTING COMMANDS 21

magic nomagic meaning

nf{,mg nf{,mg matches 0 to m of the preceding atom, as few as possible ,
nf{g nf{g matches 0 or more of the preceding atom, as few as possible ,

Character class expression

A character class expression is evaluated to the set of characters belonging to that character class. The
brackets in character class expressions are additional to the brackets delimiting a range. The following
character classes are supported:

Name Contents Name Contents

[:alnum:] letters and digits [:alpha:] letters
[:ascii:] ASCII characters [:blank:] space and tab characters
[:cntrl:] control characters [:digit:] decimal digits
[:graph:] printable characters excluding space [:lower:] lowercase letters
[:print:] printable characters including space [:punct:] punctuation characters
[:space:] whitespace characters [:upper:] uppercase letters
[:xdigit:] hexadecimal digits

6.5 O�sets allowed after search command

[num] num lines downwards, in column 1
+[num] num lines downwards, in column 1
{[num] num lines upwards, in column 1
e[+num] num characters to the right of the end of the match
e[{num] num characters to the left of the end of the match
s[+num] num characters to the right of the start of the match
s[{num] num characters to the left of the start of the match
b[+num] num characters to the right of the start (begin) of the match
b[{num] num characters to the left of the start (begin) of the match
;search command execute search command next

7 Starting, Writing and Quitting Commands

7.1 Starting VIM

vim options start editing with an empty bu�er
vim options �le . . . start editing one or more �les
vim options { read �le from stdin
vim options {t tag edit the �le associated with tag
vim options {q [�le] start editing in QuickFix mode, display the �rst error

VIM arguments:
+/pattern �le . . . , put the cursor at the �rst occurrence of pattern
+ command execute command after loading the �le
+[num] put the cursor at line [num] (default: last line)
{ { end of options, other arguments are �le names
{b , binary mode
{C , compatible, set the compatible option
{d device , Amiga: open device to be used as a console
{e , Ex mode, start VIM in Ex mode
{F , Farsi mode (fkmap and rightleft are set)
{f , GUI: foreground process, don't fork; Amiga: do not restart VIM

to open a window
{g , start GUI (also allows other options)
{H , Hebrew mode (hkmap and rightleft are set)
{i viminfo , read info from viminfo instead of other �les
{l Lisp mode

7see option magic, page 14

7 STARTING, WRITING AND QUITTING COMMANDS 22

{m modi�cations not allowed
{n , do not create a swap �le
{N , nocompatible, reset the compatible option
{o n , open n windows (default: one for each �le)
{r �le .. recover aborted edit session
{r give list of swap �les
{R , read-only mode, implies -n
{s scriptin , �rst read commands from the �le scriptin
{T terminal , set terminal name
{U gvimrc , idem, for when starting the GUI
{u vimrc , read inits from vimrc instead of other inits
{V , verbose, give informative messages
{v Vi mode, start Ex in Normal mode
{w scriptout , write typed chars to �le scriptout (append)
{W scriptout , write typed chars to �le scriptout (overwrite)
{x use encryption to read/write �les. Will prompt for a key, which is then stored in the key option.
{ read �le from stdin

7.2 Editing a �le

:e[dit] edit the current �le, unless changes have been made
:e[dit]! edit the current �le always. Discard any changes
:e[dit] �le edit �le, unless changes have been made
:e[dit]! �le edit �le always. Discard any changes
:ex [+cmd] [�le] same as :edit, but also switch to Ex mode.
:�n[d][!] [+cmd] [�le] , Find �le in \$path" and then :edit it. not in Vi
:vi[sual][!] [+cmd] [�le] when entered in Ex mode: Leave Ex mode, go back to Normal mode.
:vie[w] [+cmd] �le when entered in Ex mode: Leave Ex mode, go back to Normal mode.

[n] CTRL-b edit alternate �le n (equivalent to :e n)

gf or]f edit the �le whose name is under the cursor
:pwd print the current directory name
:cd [path] change the current directory to path
:cd - back to previous current directory.
:f[ile] print the current �le name and the cursor position
:f[ile] name set the current �le name to name
:�les show alternate �le names

7.3 Using the argument list

:ar[gs] print the argument list, with the current �le in []
:all or :sall open a window for every �le in the arg list
:wn[ext][!] write �le and edit next �le
:wn[ext][!] �le write to �le and edit next �le, unless �le exists. With !, overwrite existing �le
:wN[ext][!] �le write �le and edit previous �le

in current window: in new window: description

:argu[ment] [n] :sar[gument] n edit �le n
:n[ext] :sn[ext] edit next �le
:n[ext] arglist :sn[ext] arglist de�ne new arglist and edit �rst �le
:N[ext] :sN[ext] edit previous �le
:rew[ind][!] :srew[ind] edit �rst �le
:last :slast edit last �le

7.4 Writing and quitting

:[range]w[rite][!] write to the current �le
:[range]w[rite] �le write to �le, unless it already exists
:[range]w[rite]! �le write to �le. Overwrite an existing �le

8 WINDOWS AND BUFFERS FUNCTIONS 23

:[range]w[rite][!] >> append to the current �le
:[range]w[rite][!] >> �le append to �le
:[range]w[rite] !cmd execute cmd with range lines as standard input
:[range]up[date][!] write to current �le if modi�ed
:wall[!] write all changed bu�ers
:q[uit] quit current bu�er, unless changes have been made. Exit VIM when there are no other non-help

bu�ers
:q[uit]! quit current bu�er always, discard any changes. Exit VIM when there are no other non-help bu�ers
:conf[irm] qa[ll] exit Vim. Bring up a prompt when some bu�ers have been changed.
:qa[ll] exit VIM, unless changes have been made
:qa[ll]! exit VIM always, discard any changes
:cq quit without writing and return error code
:wq[!] write the current �le and exit
:wq[!] �le write to �le and exit
:x[it][!] �le like :wq but write only when changes have been made
ZZ same as :x
ZQ same as :q!
:conf[irm] wqa[ll] or :conf[irm] xa[ll] write all changed bu�ers and exit Vim. Bring up a prompt when

some bu�ers are readonly or cannot be written for another reason.
:xa[ll][!] or :wqa[ll][!] write all changed bu�ers and exit
:st[op][!] suspend VIM or start new shell. If aw option is set and [!] not given write the bu�er
CTRL-Z same as :stop!

8 Windows and Bu�ers functions

8.1 Multi-window functions,

CTRL-W s or :split split window into two parts

:[n] sp[lit] or new [+cmd] �le split window and edit �le in one of them. Execute the command +cmd
when the �le has been loaded. Make new window n high.

:[n]sv[iew] [+cmd] �le Same as :split, but set readonly option for this bu�er.
:[n]sf[ind] [+cmd] �le Same as :split, but search for �le in \$path". Doesn't split if �le is not found.
CTRL-W] split window and jump to tag under cursor

:pta[g][!] [tagname] Does :tag[!] [tagname] and shows the found tag in a \Preview" window without
changing the current bu�er or cursor position. If a \Preview" window already exists, it is re-used (like
a help window is). If a new one is opened, previewheight is used for the height of the window.

CTRL-W z or :pc[lose][!] Close any \Preview" windows currently open. When the hidden option is set,

or when the bu�er was changed and the [!] is used, the bu�er becomes hidden (unless there is another
window editing it). The command fails if any \Preview" bu�er cannot be closed.

:[n]pp[op][!] Does :[n]pop[!] in the preview window.
CTRL-W g Use identi�er under cursor as a tag and perform a :ptag on it. Make the new \Preview" window

(if required) N high. If N is not given, previewheight is used.
CTRL-W g g Use identi�er under cursor as a tag and perform a :ptjump on it. Make the new Preview

window (if required) N high. If N is not given, previewheight is used.
CTRL-W g] split current window in two. Use identi�er under cursor as a tag and perform :tselect on it in

the new upper window. Make new window N high.
CTRL-W g CTRL-] split current window in two. Use identi�er under cursor as a tag and perform :tjump

on it in the new upper window. Make new window N high.
CTRL-W f split window and edit �le name under the cursor

CTRL-W CTRL-b split window and edit alternate �le

CTRL-W n or :new create new empty window

CTRL-W q or :q[uit] quit editing and close window

CTRL-W c or :cl[ose] make bu�er hidden and close window

CTRL-W o or :on[ly][!] make current window only one on the screen

CTRL-W j move cursor to window below

CTRL-W k move cursor to window above

CTRL-W CTRL-W move cursor to window below (wrap)

CTRL-W W move cursor to window above (wrap)

CTRL-W t move cursor to top window

9 SCRIPT LANGUAGE 24

CTRL-W b move cursor to bottom window

CTRL-W p move cursor to previous active window

CTRL-W r rotate windows downwards

CTRL-W R rotate windows upwards

CTRL-W x exchange current window with next one

CTRL-W = make all windows equal height

CTRL-W { decrease current window height

CTRL-W + or :res[ize] +n increase current window height [by n]

CTRL-W set current window height (default: very high)

8.2 Bu�er list functions

:bu�ers or :�les list all known bu�er and �le names
:ball or :sball edit all args/bu�ers
:unhide or :sunhide edit all loaded bu�ers
:bad[d] [+lnum] fname add �le name fname to the list, without loading it. If lnum is speci�ed, the

cursor will be positioned at that line when the bu�er is �rst entered.
:bunload[!] [n] unload bu�er n from memory
:bd[elete][!] [n] or :[n]bd[delete] unload bu�er n and delete it from the bu�er list

in current window: in new window: description

:[n] bu�er [n] :[n] sbu�er [n] to arg/buf n
:[n] bnext [n] :[n] sbnext [n] to n-th next arg/buf
:[n] bNext [n] :[n] sbNext [n] to n-th previous arg/buf
:[n] bprevious [n] :[n] sbprevious [n] to n-th previous arg/buf
:brewind :sbrewind to �rst arg/buf
:blast :sblast to last arg/buf
:[n] bmod [n] :[n] sbmod [n] to n-th modi�ed buf

9 Script Language,

9.1 Variables

VIM supports two types of variables: Number{a 32 bit signed number and String{a NULL terminated
string of 8-bit unsigned characters. They are converted automatically, depending on how they are used. For
boolean operators Numbers are used. Zero is FALSE, non-zero is TRUE.

A VIM variable name can be made up of letters, digits and underscore (\ "), but it cannot start with a
digit. An internal variable is created with the :let and destroyed with the :unlet command. A variable name
that is preceded with b: and w: is local to the current bu�er and window, respectively. Inside functions
global variables are accessed with g:.

Built-in variables

v:count The count given for the last Normal mode command. Can be used to get the count before a
mapping. Read-only.

v:count1 Just like \v:count", but defaults to one when no count is used.
v:errmsg Last given error message. This variable may be set.
v:warningmsg Last given warning message. It's allowed to set this variable.
v:statusmsg Last given status message. It's allowed to set this variable.
v:shell error Result of the last shell command. When non-zero, the last shell command had an error. When

zero, there was no problem.
v:this session Full �lename of the last loaded or saved session �le. See :mksession.
v:version Version number of VIM. Major version number times 100 plus minor version number. Version

5.01 is 501. Read-only.

9 SCRIPT LANGUAGE 25

9.2 Expression syntax

Operators:8

Operator Description # Operator Description

1 jj [. . .]9 logical OR 9 =� regexp matches
2 && [. . .] logical AND 10 !� regexp doesn't match
3 == equal 11 + [. . .] number addition
4 != not equal 12 { [. . .] number subtraction
5 > greater than 13 . [. . .] string concatenation
6 >= greater than or equal 14 * [. . .] number multiplication
7 < smaller than 15 / [. . .] number division
8 <= smaller than or equal 16 % [. . .] number modulo

17 ! expr logical NOT 18 { expr unary minus

Description:
- All expressions within one level are parsed from left to right.
- Comparison operators can be appended with # { to \match case" or ? { to \ignore case" of compared
expressions.

- The arguments of *, +, {, %, /, jj and && operations are (converted to) Numbers. When comparing a
String with a Number, the String is converted to a Number, and the comparison is done on Numbers.

- Comparing two Strings is done with strcmp(). This results in the mathematical di�erence, not
necessarily the alphabetical di�erence in the local language.

- The =� and !� operators match the left hand argument with the right hand argument, which is used
as a pattern. This matching is always done like magic was set, no matter what the actual value of
magic is. The value of ignorecase does matter though. To avoid backslashes in the regexp pattern to
be doubled, use a single-quote string.

Operands:

Operand Description Operand Description

expr1[expr2] index in String number number constant
"string" string constant 'string' literal string constant
&option option value (expr1) nested expression
variable internal variable $VAR environment variable
@r contents of register \r"

function(expr1, . . .) function call

Description:

expr1[expr2] This results in a String that contains the expr2'th single character from expr1. expr1 is
used as a String, expr2 as a Number. The index starts with 0 (like in C).

Careful: column numbers start with one!

If the length of the String is less than the index, the result is an empty String.
"string" A string constant may contain these special characters:

Character Description Character Description

n... 3-digit octal number n.. 2-digit octal number10

n. 1-digit octal number 11 nx.. 2-character hex number
nx. 1-character hex number12 nX.. same as nx..

8numbered in order of increasing precedence
9[. . .] indicates that the operations in this level can be concatenated.
10must be followed by non-digit
12must be followed by non-hex

9 SCRIPT LANGUAGE 26

Character Description Character Description

nX. same as nx. nb backspace
ne escape nf formfeed
nn newline nr return
nt tab nn backslash
n" double quote n<xxx> Special key name \xxx"

Note that n000 and nx00 force the end of the string.
'string' This string is taken literally. No backslashes are removed or have a special meaning. A literal

string cannot contain a single quote. Use a normal string for that.
@r The result is the contents of the named register, as a single string. Newlines are inserted where required.

To get the contents of the unnamed register use \@@". The \=" register can not be used here.

9.3 Functions

argc() The result is the number of �les in the argument list. See arglist.
argv(n) The result is the n-th �le in the argument list.
browse(save, title, initdir, default) Put up a �le requester. This only works only in some GUI versions.

The input �elds are:
save when non-zero, select �le to write title title for the requester
initdir directory to start browsing in default default �le name

append(lnum, string) Append the text string after line lnum in the current bu�er. lnum can be zero, to
insert a line before the �rst one. Returns 1 for failure (lnum out of range) or 0 for success.

bufexists(var) The result is a Number, which is non-zero if a bu�er called var exists. If the var argument
is a string, it must match a bu�er name exactly. If the var argument is a number, bu�er numbers are
used. Use bu�er exists(0) to test for the existence of an alternate �le name.

bu
oaded(expr) The result is a Number, which is non-zero if a bu�er called expr exists and is loaded
(shown in a window or hidden). The expr argument is used like with bufexists().

bufname(expr) The result is the name of a bu�er, as it is displayed by the :ls command. If expr is a
Number, that bu�er number's name is given. If expr is a String, it is used as a regexp pattern to match
with the bu�er names.

bufnr(expr) The result is the number of a bu�er, as it is displayed by the :ls command.
bufwinnr(expr) The result is a Number, which is the number of the �rst window associated with bu�er

expr. For the use of expr, see bufname() above. If bu�er expr doesn't exist or there is no such window,
-1 is returned.

byte2line(byte) Return the line number that contains the character at byte count byte in the current bu�er.
This includes the end-of-line character, depending on the '�leformat' option for the current bu�er. The
�rst character has byte count one.

char2nr(expr) Return ASCII value of the �rst char in expr.
col(expr) The result is a Number, which is the column of the �le position given with expr. The accepted

positions are:
. the cursor position
'x position of mark \x" (if the mark is not set, 0 is returned).

Only marks in the current �le can be used. The �rst column is 1. 0 is returned for an error.
con�rm(msg, choices[, default [, type])] msg is displayed in a dialog with choices as the alternatives.

default is the number of the choice that is made if the user hits CR . If default is omitted, 0 is used.
The optional type argument gives the type of dialog.

delete(fname) Deletes the �le by the name fname. The result is a Number, which is 0 if the �le was deleted
successfully, and non-zero when the deletion failed.

did �letype() Returns non-zero when autocommands are being executed and the FileType event has been
triggered at least once. Can be used to avoid triggering the FileType event again in the scripts that
detect the �le type.

escape(string, chars) Escape the characters in chars that occur in string with a backslash.
exists(expr) The result is a Number, which is 1 if var is de�ned, zero otherwise. The expr argument is a

string, which contains one of these:
&option-name VIM option
$ENVNAME environment variable
varname internal variable.

9 SCRIPT LANGUAGE 27

expand(expr, [,
ag]) Expand the �le wildcards in expr. The result is a String. When the result of expr
starts with %, # or <, the expansion is done like for the cmdline-special variables with their associated
modi�ers. There cannot be a white space between the variables and the following modi�er. When the
current or alternate �le name is not de�ned, % or # use an empty string. Using %:p in a bu�er with no
name results in the current directory, with a \/"added.

�lereadable(fname) The result is a Number, which is TRUE when a �le with the name fname exists, and
can be read. If fname doesn't exist, or is a directory, the result is FALSE. fname is any expression,
which is used as a String.

fnamemodify(fname, mods) Modify �le name fname according to mods. mods is a string of characters
like it is used for �le names on the command line.

getcwd() The result is a String, which is the name of the current working directory.
getftime(fname) The result is a Number, which is the last modi�cation time of the given �le fname. The

value is measured as seconds since 1st Jan 1970, and may be passed to strftime().
getline(lnum) The result is a String, which is line lnum from the current bu�er.
getwinposx() The result is a Number, which is the X coordinate in pixels of the left hand side of the GUI

vim window. The result will be -1 if the information is not available.
getwinposy() The result is a Number, which is the Y coordinate in pixels of the top of the GUI vim window.

The result will be -1 if the information is not available.
glob(expr) Expand the �le wildcards in expr. The result is a String. When there are several matches,

they are separated by NL characters. If the expansion fails, the result is an empty string.

has(feature) The result is a Number, which is 1 if the feature is supported, zero otherwise. The feature
argument is a string. See Feature-list below.

hostname() The result is a String, which is the name of the machine on which VIM is currently running.
Machine names greater than 256 characters long are truncated.

histadd(history, item) Add the String item to the history history which can be one of:
cmd or : command line history
search or / search pattern history
expr or = typed expression history
input or @ input line history

If item does already exist in the history, it will be shifted to become the newest entry. The result is a
Number: 1 if the operation was successful, otherwise 0 is returned.

histdel(history [, item]) Clear history, i.e. delete all its entries. If the parameter item is given as String,
this is seen as regular expression. All entries matching that expression will be removed from the history
(if there are any). If item is a Number, it will be interpreted as index. The respective entry will be
removed if it exists. The result is a Number: 1 for a successful operation, otherwise 0 is returned.

histget(history [, index]) The result is a String, the entry with Number index from history. See hist-
names for the possible values of history, and :history-indexing for index. If there is no such entry, an
empty String is returned. When index is omitted, the most recent item from the history is used.

histnr(history) The result is the Number of the current entry in history. See hist-names for the possible
values of history. If an error occurred, -1 is returned.

hlexists(name) The result is a Number, which is non-zero if a highlight group called name exists. The
group may have been de�ned as a highlight group or as a syntax item or both. Not necessarily when
highlighting has been de�ned for it, it may also have been used for a syntax item.

hlID(name) The result is a Number, which is the ID of the highlight group with name name. When the
highlight group doesn't exist, zero is returned.

input(prompt) The result is a String, which is whatever the user typed on the command-line. The pa-
rameter is either a prompt string, or a blank string (for no prompt). A
n can be used in the prompt to start a new line.

isdirectory(directory) The result is a Number, which is TRUE when a directory with the name directory
exists. If directory doesn't exist, or isn't a directory, the result is FALSE. directory is any expression
used as a String.

libcall(libname, funcname, argument) Call function funcname in the run-time library libname with
argument argument. The result is the String returned. If argument is a number, it is passed to the
function as an int; if param is a string, it is passed as a null-terminated string. If the function returns
NULL, this will appear as an empty string to Vim. WARNING: If the function returns a non-valid
pointer, Vim will crash! This also happens if the function returns a number. For Win32 systems,
libname should be the �lename of the DLL without the \.dll" suÆx. A full path is only required if the
DLL is not in the usual places.

line(expr) The result is a Number, which is the line number of the �le position given with expr. The
accepted positions are:

9 SCRIPT LANGUAGE 28

. the cursor position
$ the last line in the current bu�er
'x position of mark \x" (if the mark is not set, 0 is returned)

Only marks in the current �le can be used.
line2byte(lnum) Return the byte count from the start of the bu�er for line lnum. This includes the end-

of-line character, depending on the '�leformat' option for the current bu�er. The �rst line returns 1.
When lnum is invalid -1 is returned.

localtime() Return the current time, measured as seconds since 1st Jan 1970.
maparg(name[, mode]) Return the rhs of mapping name in mode mode. When there is no mapping for

name, an empty String is returned. These characters can be used formode:
\n" Normal \v" Visual
\o" Operator-pending \i" Insert
\c" Cmd-line "" Normal,

When mode is omitted, the modes from "" are used. The name can have special key names, like in
the \:map" command. The returned String has special characters translated like in the output of the
\:map" command listing.

mapcheck(name[, mode]) Check if there is a mapping that matches with name in mode mode. When
there is no mapping that matches with name, and empty String is returned. If there is one, the rhs
of that mapping is returned. If there are several matches, the rhs of one of them is returned. This
function can be used to check if a mapping can be added without being ambiguous.

match(expr, pat) The result is a Number, which gives the index in expr where pat matches. If there is no
match, -1 is returned. See pattern for the patterns that are accepted.

matchend(expr, pat) Same as match(), but return the index of �rst character after the match.
matchstr(expr, pat) Same as match(), but return the matched string.
nr2char(expr) Return a string consisting of a single character with the ASCII value expr.
rename(from, to) Rename the �le by the name from to the name to. This should also work to move �les

across �le systems. The result is a Number, which is 0 if the �le was renamed successfully, and non-zero
when the renaming failed.

setline(lnum, line) Set line lnum of the current bu�er to line. If this succeeds, 0 is returned. If this fails
(most likely lnum is invalid) 1 is returned.

strftime(format[, time]) The result is a String, which is the current date and time, as speci�ed by the
format string. See the manual page of the C function strftime() for the format. The maximum length
of the result is 80 characters.

strlen(expr) The result is a Number, which is the length of the String expr.
strpart(src, start, len) The result is a String, which is part of src, starting from character start, with

the length len. When characters beyond the length of the string are implied, this doesn't result in an
error, the characters are simply omitted.

strtrans(expr) The result is a String, which is expr with all unprintable characters translated into printable
characters.

substitute(expr, pat, sub,
ags) The result is a String, which is a copy of expr, in which the �rst match
of pat is replaced with sub. This works like the :substitute command (without any
ags). But the magic
option is ignored, the pat is always processed as if magic is set. When pat does not match in expr,
expr is returned unmodi�ed. When
ags is g, all matches of pat in expr are replaced. Otherwise
ags
should be "".

synID(line, col, trans) The result is a Number, which is the syntax ID at the position line and col in
the current window. The syntax ID can be used with synIDattr() and synIDtrans() to obtain syntax
information about text. col is 1 for the leftmost column, line is 1 for the �rst line.
When trans is non-zero, transparent items are reduced to the item that they reveal. This is useful
when wanting to know the e�ective color. When trans is zero, the transparent item is returned. This
is useful when wanting to know which syntax item is e�ective (e.g. inside parentheses).

synIDattr(synID, what) [, mode] The result is a String, which is the what attribute of syntax ID synID.
This can be used to obtain information about a syntax item. mode can be gui, cterm or term, to get
the attributes for that mode.

synIDtrans(synID) The result is a Number, which is the translated syntax ID of synID. This is the syntax
group ID of what is being used to highlight the character. Highlight links are followed.

system(expr) Get the output of the shell command expr. Note: newlines in expr may cause the command
to fail. This is not to be used for interactive commands. The result is a String. To make the result more
system-independent, the shell output is �ltered to replace hCRi with hNLi for Macintosh, and hCRihNLi
with hNLi for DOS-like systems.

tempname() The result is a String, which is the name of a �le that doesn't exist. It can be used for a
temporary �le. The name is di�erent for each least 26 consecutive calls.a unique �le.

visualmode() The result is a String, which describes the last Visual mode used. Initially it returns an

9 SCRIPT LANGUAGE 29

empty string, but once Visual mode has been used, it returns \v", \V", or \CTRL-V" (a single CTRL-
V character) for character-wise, line-wise, or block-wise Visual mode respecively.

virtcol(expr) The result is a Number, which is the screen column of the �le position given by expr. The
column number is return as if the screen were of in�nite width. If there is a hTabi at that position, the
returned Number is the last column occupied by the hTabi. For example, for a hTabi in column 1, with
ts set to 8, it returns 8; The accepted positions are:

. the cursor position
'x position of mark \x" (if the mark is not set, 0 is returned)

Only marks in the current �le can be used.
winbufnr(n) The result is a Number, which is the number of the bu�er associated with window n. When

n is zero, the number of the bu�er in the current window is returned. When window n doesn't exist,
-1 is returned.

winheight(n) The result is a Number, which is the height of window nr. When n is zero, the height of the
current window is returned. When window n doesn't exist, -1 is returned. An existing window always
has a height of zero or more.

winnr() The result is a Number, which is the number of the current window. The top window has number
1.

Feature-list:

Feature Description

all builtin terms all builtin terminals enabled.
amiga Amiga version of VIM.
arp ARP support (Amiga).
autocmd autocommands support.
beos BeOS version of VIM.
browse :browse support, and browse() will work.
builtin terms some builtin terminals.
byte o�set support for \o" in statusline
cindent cindent support.
clipboard clipboard support.
cmdline compl cmdline-completion support.
cmdline info showcmd and ruler support.
comments comments support.
cryptv encryption support encryption.
cscope :cscope support.
compatible Compiled to be very Vi compatible.
debug DEBUG de�ned.
dialog con console dialog support.
dialog gui GUI dialog support.
digraphs support for digraphs.
dos32 32 bits DOS (DJGPP) version of VIM.
dos16 16 bits DOS version of VIM.
emacs-tags support for Emacs tags.
eval expression evaluation support.
ex extra extra Ex commands.
extra search support for incsearch and hlsearch
farsi Farsi support (farsi).
�le in path support for gf and <cfile>

�nd in path support for include �le searches
fname case Case in �le names matters (Unix only).
fork Compiled to use fork()/exec() instead of system().
gui GUI enabled.
gui athena Athena GUI.
gui beos BeOs GUI.
gui gtk GTK+ GUI.
gui mac Macintosh GUI.
gui motif Motif GUI.
gui win32 MS Windows Win32 GUI.

9 SCRIPT LANGUAGE 30

Feature Description

gui win32s ibid, and Win32s system being used (Windows 3.1)
gui running VIM is running in the GUI, or it will start soon.
hangul input Hangul input support.
insert expand support for CTRL-X expansion commands in Insert mode.
langmap langmap support.
linebreak linebreak, breakat and showbreak
support. lispindent support for lisp indenting.
mac Macintosh version of VIM.
menu support for :menu.
mksession support for :mksession.
modify fname �le name modi�ers.
mouse support mouse.
mouse dec support for Dec terminal mouse.
mouse gpm support for gpm (Linux console mouse)
mouse netterm support for netterm mouse.
mouse xterm support for xterm mouse.
multi byte support for Korean et al.
multi byte ime support for IME input method
ole OLE automation support for Win32.
os2 OS/2 version of Vim.
os�letype support for os�letypes.
perl Perl interface.
python Python interface.
quick�x quick�x support.
rightleft rightleft support.
scrollbind scrollbind support.
smartindent smartindent support.
sni� SniFF interface support.
statusline support for statusline, rulerformat and special formats of titlestring and

iconstring.
syntax syntax highlighting support.
syntax items There are active syntax highlighting items for the current bu�er.
system Compiled to use system() instead of fork()/exec().
tag binary binary searching in tags �les.
tag old static support for old static tags.
tag any white support for any white characters in tags �les.
tcl Tcl interface.
terminfo terminfo instead of termcap.
textobjects support for text-objects.
tgetent tgetent support, able to use a termcap or terminfo �le.
title window title support title.
unix Unix version of VIM.
user-commands User-de�ned commands.
viminfo viminfo support.
vim starting True while initial source'ing takes place.
visualextra extra Visual mode commands.
vms VMS version of Vim.
wildignore wildignore option.
win32 Win32 version of VIM (Windows 95/NT).
wildmenu wildmenu option.
wildignore wildignore option.
winaltkeys winaltkeys option.
win16 Win16 version of Vim (Windows 3.1).
win32 Win32 version of Vim (Windows 95/NT).
writebackup writebackup default on.
xim X input method support.
xfontset X fontset support.
xterm clipboard support for xterm clipboard.

9 SCRIPT LANGUAGE 31

Feature Description

xterm save support for saving and restoring the xterm screen.
x11 X11 support.

9.4 User-De�ned Functions

New functions can be de�ned. They can be called with \Name()", just like built-in functions. The name
must start with an uppercase letter, to avoid confusion with builtin functions.

:fu[nction] List all functions and their arguments.
:fu[nction] name List function name.
:fu[nction][!] name ([arguments]) [range] [abort] De�ne a new function by the name name. The name

must be made of alphanumeric characters and underscore, and must start with a capital. An argument
can be de�ned by giving its name. In the function this can then be used as \a:name" (\a:" for
argument). Up to 20 arguments can be given, separated by commas. An argument \. . . " can be
speci�ed, which means that more arguments may be following. In the function they can be used as
\a:1", \a:2", etc. \a:0" is set to the number of extra arguments (which can be 0). When not using
\. . . ", the number of arguments in a function call must be equal the number of named arguments.
When using \. . . ", the number of arguments may be larger. The body of the function follows in the
next lines, until \:endfunction". When a function by this name already exists and [!] is not used
an error message is given. When [!] is used, an existing function is silently replaced. When the
range argument is added, the function is expected to take care of a range itself. The range is passed as
\a:firstline" and \a:lastline". If range is excluded, a \:call" with a range will call the function
for each line, with the cursor on the start of each line. When the [abort] argument is added, the
function will abort as soon as an error is detected.

:endf[unction] The end of a function de�nition.
:delf[unction] name Delete function name.
:retu[rn] [expr] Return from a function. When expr is given, it is evaluated and returned as the result of

the function. If expr is not given, the number 0 is returned. When a function ends without an explicit
\:return", the number 0 is returned.

Inside a function variables can be used. These are local variables, which will disappear when the function
returns. Global variables need to be accessed with g:.

9.5 Commands

:let var-name = expr Set internal variable var-name to the result of the expression expr. The variable
will get the type from the expr. If var-name didn't exist yet, it is created.

:let $env-name = expr Set environment variable env-name to the result of the expression expr. The
type is always String.

:let @reg-name = expr Write the result of the expression expr in register reg-name. reg-name must be a
single letter, and must be the name of a writable register. \@@" can be used for the unnamed register.
If the result of expr ends in a hCRi or hNLi, the register will be linewise, otherwise it will be set to
characterwise.

:let &option-name = expr Set option option-name to the result of the expression expr. The type of the
option is always used.

:unl[et][!] var-name Remove the internal variable var-name. Several variable names can be given, they
are all removed. With [!] no error message is given for non-existing variables.

:if expr . . . :en[dif] Execute the commands until the next matching :else or :endif if expr evaluates to
non-zero. Note: from VIM version 4.5 until 5.0, every Ex command between the :if and :endif is
ignored.

:el[se] Execute the commands until the next matching :else or :endif if they were not already being executed.
:elsei[f] expr Short for :else :if, with the addition that there is no extra :endif.
:wh[ile] expr . . . :endw[hile] Repeat the commands between :while and :endwhile, as long as expr evaluates

to non-zero. When an error is detected from a command inside the loop, execution continues after the
:endwhile.

Note: The :append and :insert commands don't work properly inside a :while loop.
:con[tinue] When used inside a :while, jumps back to the :while.
:brea[k] When used inside a :while, skips to the command after the matching :endwhile.
:ec[ho] expr . . . Echoes each expr, with a space in between and a terminating hEOLi. See also :comment.

10 GUI 32

:echon expr . . . Echoes each expr, without anything added. Also see :comment.
:echoh[l] name Use the highlight group name for the following :echo[n] commands.
:exe[cute] expr . . . Executes the string that results from the evaluation of expr as an Ex command.

Multiple arguments are concatenated, with a space in between.

Note: :execute, :echo and :echon cannot be followed by a comment directly, because they see the " as the
start of a string. But, you, however, can use \j" followed by a comment.

10 GUI,

10.1 Mouse Control

The mouse only works if the appropriate
ag in the mouse option is set. When the GUI is switched on,
the mouse option is set to a, enabling it for all modes except for the \hit return to continue" message.
This can be changed from the gvimrc �le. A quick way to set these is with the ":behave" command.

:be[have] model set behavior for mouse and selection. Valid arguments are: mswin (MS-Windows behav-
ior) and xterm (Xterm behavior)

Using \:behave" changes these options:

option mswin xterm option mswin xterm

selectmode mouse,key { mousemodel popup extend
keymodel startsel,stopsel { selection exclusive inclusive

Visual Selection with Mouse

The mouse can be used to start a selection. How depends on the mousemodel option: If selectmode
contains mouse, then the selection will be in Select mode. This means that typing normal text will replace
the selection. Otherwise, the selection will be in Visual mode.

Right button: Click the right button to extend the visual selection to the position pointed to with the
mouse. In Visual mode the closest end will be extended, otherwise Visual mode is started and extends
from the old cursor position to the new one.

Left button: Double clicking may be done to make the selection word-wise, triple clicking makes it line-
wise, and quadruple clicking makes it rectangular block-wise.

X11 vs. Win32 GUI

X11 GUI: In Visual mode, the highlighted text may be pasted into other windows. Likewise, the selected
text from other windows may be pasted into VIM in Normal mode, Insert mode, or on the Command
line by clicking the middle mouse button.

Win32 GUI: Visually selected text is only copied to the clipboard when using a y command, or another
operator when the *" register is used.

Other Text Selection with Mouse

In Command-line mode, at the hit-return prompt or if the mouse option is turned o�, a di�erent kind
of selection is used: the left button selects, the right button extends the selection and the middle one pastes
the text back.

Various Mouse Clicks

Left or right click on the status line makes that window current. Drag the status line to resize the
windows above and below.

S-LeftMouse Search forward for the word under the mouse click.

S-RightMouse Search backward for the word under the mouse click.

C-LeftMouse Jump to the tag name under the mouse click.

C-RightMouse Jump back to position before the previous tag jump

10 GUI 33

GUI Selections

A special register *" is used for storing GUI selection. Nothing is put in there unless the information
about what text is selected is about to change, or when another application wants to paste the selected
text. Similarly, when we want to paste a selection from another application, the selection is put in the *"
register �rst, and then put like any other register.

Note: when pasting text from one VIM into another separate VIM, the type of selection (character,
line, or block) will also be copied.

Mouse Mappings

The mouse events, complete with modi�ers, may be mapped.

Example

1 :map <S-LeftMouse> <RightMouse>

2 :map <S-LeftDrag> <RightDrag>

Note: Mouse mapping with modi�ers does not work for xterm-like selection.

10.2 Window Position

Vim tries to make the window �t on the screen when it starts up. This avoids that you can't see part of
it. You can change the height that is used for the window title and a task bar with the guiheadroom option.

:winp[os] Display current position of the top left corner of the GUI vim window in pixels. Does not work
in all versions.

:winp[os] X Y Put the GUI vim window at the given X and Y coordinates. The coordinates should specify
the position in pixels of the top left corner of the window. Does not work in all versions.

10.3 Menus

The default menus are read from the �le \$VIMRUNTIME/menu.vim". Motif and Win32 GUIs support
Tear-o� menus.

Creating New Menus

:me :menu :noreme :noremenu :am :amenu :an :anoremenu
:nme :nmenu :nnoreme :nnoremenu :ome :omenu :onoreme :onoremenu
:vme :vmenu :vnoreme :vnoremenu :ime :imenu :inoreme :inoremenu
:cme :cmenu :cnoreme :cnoremenu

To create a new menu item, use the :menu commands. They work exactly like the :map set of commands
but the �rst argument is a menu item name, given as a path of menus and sub-menus with a \." between
them.

The :amenu command can be used to de�ne menu entries for all modes at once. To make the command
work correctly, a character is automatically inserted for modes: Normal) nothing, Insert) hCTRL-Oi,
Cmdline) hCTRL-Ci, Visual) hEsci, Op-pending) hEsci.

Careful: In Insert mode this only works for a SINGLE Normal mode command, because of the CTRL-O .
If you have two or more commands, you will need to use the :imenu command.

Special characters in a menu name:

& The next character is the shortcut key. Make sure each shortcut key is only used once in a (sub)menu.
hTabi Separates the menu name from right-aligned text. This can be used to show the equivalent typed

command.

Menu-priority

The position of a menu item on the menu bar is determined by its \priority". The priority is given as a
number before the :menu command. Menus with a higher priority go more to the right. When no priority
is given, 500 is used. The highest possible priority is about 32000. Currently, you can only give a priority
for the location of the menu in the menu bar, not for the location of a menu item in a menu. The default
menus have these priorities: File 7!10; Edit 7!20; Tools 7!40; Syntax 7!50; Bu�ers 7!60; Window 7!70;
Help 7!9999; The same mechanism can be used to position a submenu. The priority is then given as a
dot-separated list of priorities, before the menu name.

10 GUI 34

Toolbar

Currently, the toolbar is only available in the Win32 and gtk+ GUI. It should turn up in other GUIs in
due course. The display of the toolbar is controlled by the guioptions letter T. The toolbar is de�ned as a
special menu called ToolBar, which only has one level.

Tooltips & Menu tips

These are currently only supported for the Win32 GUI.

:tm[enu] menupath rhs De�ne a tip for a menu or tool. When a tip is de�ned for a menu item, it appears
in the command-line area when the mouse is over that item. When a tip is de�ned for a toolbar item,
it appears as a tooltip when the mouse pauses over that button.

:tu[nmenu] menupath Remove a tip for a menu or tool.

Showing What Menus Are Mapped To

To see what an existing menu is mapped to, use just one argument after the menu commands (similar to
the :map commands). If the menu speci�ed is a submenu, then all menus in that hierarchy will be shown.
If no argument is given after :menu at all, then ALL menu items are shown for the appropriate mode (e.g.
Command-line mode for :cmenu).

Note: while entering a menu name after a menu command, Tab may be used to complete the name of
the menu item.

Deleting Menus

:unme :unmenu :aun :aunmenu :nunme :nunmenu
:ounme :ounmenu :vunme :vunmenu :iunme :iunmenu
:cunme :cunmenu

To delete a menu item or a whole submenu, use the :unmenu commands, which are analogous to the :unmap
commands. To remove all menus use:

:unmenu n* " remove all menus in Normal and visual mode

:unmenu! n* " remove all menus in Insert and Command-line mode

10.4 Miscellaneous

This section describes other features which are related to the GUI.
- Typing bV followed by a special key in the GUI will insert hKeyi, since the internal string used is
meaningless. Modi�ers may also be held down to get hModifiers-Keyi.

- In the GUI, the modi�ers hSHIFTi, hCTRLi, and hALTi (or hMETAi) may be used within mappings of
special keys and mouse events

- In the GUI, several normal keys may have modi�ers in mappings etc, these are hSpacei, hTabi, hNLi,
hCRi, hEsci.

- Executing an external command from the GUI will not always work. \Normal" commands like ls,
grep and make mostly work �ne. Commands that require an intelligent terminal like less and ispell

won't work. Some may even hang and need to be killed from another terminal. For the X11 GUI the
external commands are executed inside the gvim window. For the Win32 GUI the external commands
are executed in a separate window.

- Normally, Vim takes control of all hAlti-hKeyi combinations, to increase the number of possible map-
pings. This clashes with the standard use of Alt in Win32 as the key for accessing menus. The quick
way of getting standard behavior is to set the winaltkeys option to yes. This however prevents you
from mapping hAlti keys at all. Another way is to set winaltkeys to menu. Menu shortcut keys are
then handled by windows, other ALT keys can be mapped. This doesn't allow a dependency on the
current state though. To get round this, the :simalt key command allows Vim (when winaltkeys is not
set to yes) to fake a Windows-style hAlti keypress.

This example shows how to add and remove a menu item for the keyword under the cursor. The register
z is used

Example

1 :nmenu Words.Add\ Var wb"zye:menu! Words.<C-R>z <C-R>z<CR>

2 :nmenu Words.Remove\ Var wb"zye:unmenu! Words.<C-R>z<CR>

3 :vmenu Words.Add\ Var "zy:menu! Words.<C-R>z <C-R>z <CR>

4 :vmenu Words.Remove\ Var "zy:unmenu! Words.<C-R><CR>

11 SYNTAX HIGHLIGHTING 35

5 :imenu Words.Add\ Var <Esc>wb"zye:menu! Words.<C-R>z <C-R>z<CR>a

6 :imenu Words.Remove\ Var <Esc>wb"zye:unmenu! Words.<C-R>z<CR>a

11 Syntax highlighting ,

Syntax highlighting provides the possibility of showing parts of the text in another font or color. To start
using syntax highlighting, type this command: :sy[ntax] on. This will enable automatic syntax highlighting.
The type of highlighting will be selected using the �le name extension, and sometimes using the �rst line of
the �le. The name of the acitve syntax is stored in the \current syntax" variable.

11.1 Syntax �les

The syntax and highlighting commands for one language are normally stored in a syntax �le named
\name.vim", where name is the [abbreviated] name of the language. The syntax �le can contain any Ex

commands.

Naming Conventions

To allow each user to pick his favorite set of colors, a set of pre-de�ned names for highlight groups
common for many languages has been chosen. These are the preferred names for di�erent highlight groups:

Name Used for: Name Used for:

*Comment any comment *Constant any constant
*Error any erroneous construct *Identi�er any variable name
*Ignore left blank, hidden *PreProc generic Preprocessor
*Special any special symbol *Statement any statement
*Todo anything that needs extra at-

tention
*Type int, long, char . . .

Boolean a boolean constant Character a character constant
Conditional if, then, else ... Debug debugging statements
De�ne #define Delimiter delimiting character
Exception try, catch, throw Float a
oating point constant
Function function and class method

names
Include #include

Keyword any other keyword Label case, default

Macro same as De�ne Number a number constant
Operator sizeof, +, * . . . PreCondit #if, #else . . .
Repeat for, do, while ... SpecialChar special character in a constant
SpecialComment special things inside a comment StorageClass static, register . . .
String a string constant Structure struct, union, enum . . .
Tag use CTRL-] on this Typedef a typedef

The names marked with *" are the preferred groups, the other are minor groups. For the preferred
groups, the \syntax.vim" �le contains default highlighting. The highlight group names are not case sensi-
tive. The following names are reserved and cannot be used as a group name: NONE ALL ALLBUT contains

contained.

11.2 De�ning a syntax

VIM understands three types of syntax items:

keyword can only contain keyword characters, de�ned by to the iskeyword option. Keyword cannot contain
other syntax items. It will only be recognized when there is a complete match (there are no keyword
characters before or after the match), e.g. if would match in if(a=b), but not in ifdef x.

match a match with a single regexp pattern. It must be within one line.
region starts at a match of the start regexp pattern and ends with a match of the end regexp pattern. A

skip regexp pattern can be used to avoid matching the end pattern.

Several syntax items can be put into one syntax group. For a syntax group you can provide highlighting
attributes. You are free to make a highlight group for one syntax item, or to put all items into one group. In

11 SYNTAX HIGHLIGHTING 36

case where more than one item matches at the same position, the one that was de�ned last wins. A keyword
always goes before a match or region. A keyword with matching case always goes before a keyword with
ignoring case.

:sy[ntax] case [matchjignore] de�nes whether the following :sy[ntax] commands will work with matching
case, when using match, or with ignoring case, when using ignore. Note that any items before this are
not a�ected, and all items until the next :sy[ntax] case command are a�ected.

:sy[ntax] keyword group-name [options] keyword . . . [options] de�nes a number of keywords, where:

group-name { syntax group name, e.g. Comment.

options { See \Syntax arguments" below.

keyword . . . { list of keywords which belong to this group.

The options can be given anywhere in the line. They will apply to all keywords given, also for options
that come after a keyword. When you have a keyword with an optional tail, like Ex commands in VIM,
you can put the optional characters inside [], to de�ne all the variations at once.

A keyword always has higher priority than a match or region; the keyword is used if more than one
item matches. Keywords do not nest and a keyword can't contain anything else. The maximum length
of a keyword is 80 characters. The same keyword can be de�ned multiple times, when its containment
di�ers.

:sy[ntax] match group-name [options] [excludenl] pattern [options] de�nes one match, where pat-
tern is the search pattern that de�nes the match. excludenl{ don't make a pattern with the end-of-line
\$" extend a containing match or item. Only useful for end patterns.

:sy[ntax] region group-name [options] [matchgroup=group name] [keepend] start = start pattern

. . . [skip = skip pattern] end = end pattern . . . [options]
de�nes one region, where:

[matchgroup=group-name] { the syntax group to use for the following start or end pattern matches
only. Not used for the text in between the matched start and end patterns. Use NONE to reset to not
using a di�erent group for the start or end match.

keepend { doesn't allow contained matches to go past a match with the end pattern.

start=start pattern { the search pattern that de�nes the start of the region.

skip=skip pattern { the search pattern that de�nes text inside the region where not to look for the
end pattern.

end=end pattern { the search pattern that de�nes the end of the region.

The start/skip/end patterns and the options can be given in any order. There can be zero or one
skip pattern. There must be one or more start and end patterns.

Cleaning up

:sy[ntax] clear switches o� syntax highlighting. It's a good idea to include this command at the beginning
of a syntax �le.

:sy[ntax] o� disables syntax highlighting for all bu�ers
:sy[ntax] clear sync-group-name . . . removes all patterns and keywords for group-name in the current

bu�er.

Listing syntax items

:sy[ntax] [list] lists all the syntax items
:sy[ntax] list group-name shows the syntax items for one syntax group
:sy[ntax] list grouplist-name shows the syntax groups for one group list

11.3 Syntax arguments

The :sy[ntax] commands that de�ne syntax items take a number of arguments. The common ones are
explained here. The arguments may be given in any order and may be mixed with the patterns.

contained when the contained argument is given, this item will not be recognized at the top level, but
only when it is mentioned in the contains �eld of another match.

11 SYNTAX HIGHLIGHTING 37

transparent if the transparent argument is given, this item will not be highlighted itself, but will take
the highlighting of the item it is contained in. This is useful for syntax items that don't need any
highlighting but are used only to skip over a part of the text. The same groups as the item it is
contained in are used, unless a contains argument is given too.

oneline the oneline argument indicates that the region does not cross a line boundary. It must match
completely in the current line. However, when the region has a contained item that does cross a line
boundary, it continues on the next line anyway. A contained item can be used to recognize a line
continuation pattern.

contains=groupname, . . . the contains argument is followed by a list of syntax group names. These
groups will be allowed to begin inside the item (they may extend past the containing group's end).
This allows for recursive nesting of matches and regions. If there is no contains argument, no groups
will be contained in this item. The group names do not need to be de�ned before they can be used
here.

contains=ALL if the only item in the contains list is ALL, then all groups will be accepted inside the
item.

contains=ALLBUT, group-name, . . . if the �rst item in the contains list is ALLBUT, then all groups
will be accepted inside the item, except the ones that are listed, and the contained items.

The group-name in the contains list can be a pattern. All group names that match the pattern will be
included (or excluded, if ALLBUT is used). The pattern cannot contain white space or a comma.

nextgroup=groupname, . . . the nextgroup argument is followed by a list of syntax group names, sepa-
rated by commas (just like with contains, so you can also use patterns). If the nextgroup argument is
given, the mentioned syntax groups will be tried for a match, after the match or region ends. If none
of the groups match, highlighting continues normally. If there is a match, this group will be used, even
when it is not mentioned in the contains �eld of the current group. This is like giving the mentioned
group priority over all other groups

skipwhite skip over hSpacei and hTabi characters. When skipwhite is present, the white space is only
skipped if there is no next group that matches the white space.

skipnl skip over the end of a line. When skipnl is present, the match with nextgroup may be found in the
next line. This only happens when the current item ends at the end of the current line. When skipnl
is not present, the nextgroup will only be found after the current item in the same line.

skipempty skip over empty lines (implies a skipnl)

Note: the skipwhite, skipnl and skipempty are only used in combination with nextgroup.

11.4 Syntax patterns

In the syntax commands, a pattern must be surrounded by two identical characters (delimiters). Syntax
patterns are always interpreted as if the magic option is set and the \l"
ag is not included in cpoptions.
The pattern can be followed by a character o�set, which can be used to change the highlighted part and to
change the text area included in the match or region. Note: no white space is allowed between the pattern
and the character o�set(s).

The o�set takes the form of what=offset, where what can be one of six strings:
ms Match Start o�set for the start of the matched text
me Match End o�set for the end of the matched text
hs Highlight Start o�set for where the highlighting starts
he Highlight End o�set for where the highlighting ends
rs Region Start o�set for where the body of a region starts
re Region End o�set for where the body of a region ends
lc Leading Context o�set past \leading context" of pattern

The o�set can be:
s start of the matched pattern
s+num start of the matched pattern plus num chars to the right
s-num start of the matched pattern plus num chars to the left
e end of the matched pattern
e+num end of the matched pattern plus num chars to the right
e-num end of the matched pattern plus num chars to the left
num (for lc only): start matching num chars to the left

O�sets can be concatenated, separated by commas.

11 SYNTAX HIGHLIGHTING 38

Leading context

The lc o�set speci�es a leading context: a part of the pattern that must be present, but is not considered
part of the match. An o�set of lc=n will cause VIM to step back n columns before attempting the pattern
match, allowing characters which have already been matched in previous patterns to also be used as the
leading context for this match.

The ms o�set is automatically set to the same value as the lc o�set, unless you set ms explicitly.

11.5 Synchronizing

:sy[ntax] sync [ccomment [group-name] j minlines=N j . . .]
There are three ways to synchronize. For all three methods, the line range within which the parsing can

start is limited by minlines and maxlines.
If the minlines=N argument is given, the parsing always starts at least that many lines backwards. This

can be used if the parsing may take a few lines before it's correct, or when it's not possible to use syncing.
If the maxlines=N argument is given, the number of lines that are searched for a comment or syncing

pattern is restricted to N lines backwards (after adding minlines). This is useful if you have few things to
sync on and a slow machine.

First syncing method:

For the �rst method, only the ccomment argument needs to be given. WhenVIM �nds that the line where
displaying starts is inside a C-style comment, the �rst region syntax item with the group-name Comment
will be used.

The maxlines argument can be used to restrict the search to a number of lines. The minlines argument
can be used to start at least a number of lines back (e.g., for when there is some construct that only takes
a few lines, but is hard to sync on).

Second syncing method:

For the second method, only the minlines=N argument needs to be given. VIM will subtract N from the
line number and start parsing there. This means N extra lines need to be parsed, which makes this method
a bit slower.
Note: lines and minlines are equivalent.

Third syncing method:

The idea is to synchronize on the end of a few speci�c regions, called a sync pattern. The search starts
in the line just above the one where redrawing starts. From there the search continues backwards in the �le.

A line continuation pattern can be given here. It is used to decide which group of lines need to be
searched as if they were a single line. This means that the search for a match with the speci�ed items starts
in the �rst of the following that contains the continuation pattern.

When a match with a sync pattern is found, the rest of the line (or group of adjacent lines) is searched
for another match. The last match is used. This is used when a line can contain both the start and the end
of a region (e.g., in a C-comment like /* this */, the last */ is used).

There are two ways how a match with a sync pattern can be used:

� Parsing for highlighting starts where redrawing starts (and where the search for the sync pattern
started). The syntax group that is expected to be valid there must be speci�ed. This works well when
the regions that cross lines cannot contain other regions.

� Parsing for highlighting continues just after the match. The syntax group that is expected to be
present just after the match must be speci�ed. This can be used when the previous method doesn't
work well. It's much slower, because more text needs to be parsed.

Both types of sync patterns can be used at the same time. Besides the sync patterns, other matches and
regions can be speci�ed, to avoid �nding unwanted matches.

:sy[ntax] sync match group-name grouphere sync-group-name . . . de�ne a match that is used for
syncing. sync-group-name is the name of a syntax group that follows just after the match. Parsing of
the text for highlighting starts just after the match. A region must exist for this sync-group-name. The
�rst one de�ned will be used. NONE can be used for when there is no syntax group after the match.

11 SYNTAX HIGHLIGHTING 39

:sy[ntax] sync match group-name groupthere sync-group-name . . . like grouphere, but sync-group-
name is the name of a syntax group that is to be used at the start of the line where searching for the
sync point started. The text between the match and the start of the sync pattern searching is assumed
not to change the syntax highlighting.

:sy[ntax] sync match . . . , :sy[ntax] sync region . . . de�ne a region or match that is skipped while
searching for a sync point.

:sy[ntax] sync linecont pattern when pattern matches in a line, it is considered to continue in the next
line. This means that the search for a sync point will consider the lines to be concatenated.

If the maxlines=N argument is given too, the number of lines that are searched for a match is restricted
to N.

Clearing syntax

:sy[ntax] sync clear clears all sync settings
:sy[ntax] sync clear group-name . . . clears speci�c sync patterns

11.6 Highlight command

There are two types of highlight groups:

� The groups used for speci�c languages. For these the name starts with the name of the language.
Many of these don't have any attributes, but are linked to a group of the second type.

� The groups used for all languages. These are also used for the highlight option.

:hi[ghlight] list all the current highlight groups that have attributes set.
:hi[ghlight] group-name list one highlight group.
:hi[ghlight] clear group-name, :hi[ghlight] group-name NONE disable the highlighting for one high-

light group.
:hi[ghlight] group-name key=arg . . . add a highlight group, or change the highlighting for an existing

group.

Highlight arguments for black and white terminals (vt100, xterm)

term=attr-list attr-list is a comma separated list (without spaces) of the following items (in any order):
NONE (no attributes used), bold, underline, reverse, inverse (same as reverse), italic, standout.

start=term-list, stop=term-list These lists of terminal codes can be used to get non-standard attributes
on a terminal.

The escape sequence speci�ed with the start argument is written before the characters in the highlighted
area. It can be anything that you want to send to the terminal to highlight this area. The escape
sequence speci�ed with the stop argument is written after the highlighted area. This should undo the
start argument.

The term-list can have two forms:

� A string with escape sequences. This is any string of characters, except that it can't start with t
and blanks are not allowed. The <> notation is recognized here, so you can use things like <Esc>
and <Space>.

� A list of terminal codes. Each terminal code has the form t xx, where xx is the name of the
termcap entry. The codes have to be separated with commas.

Note: white space is not allowed.

Default highlight group

These are the default highlighting groups. These groups are used by the highlight option default.

Cursor the character under the cursor
Directory directory names (and other special names in listings)
ErrorMsg error messages
IncSearch incsearch highlighting
ModeMsg showmode message
MoreMsg more-prompt
NonText � and at the end of the window and characters from

11 SYNTAX HIGHLIGHTING 40

Question hit-return prompt and yes/no questions
SpecialKey Meta and special keys listed with \:map"
StatusLine status line of current window
StatusLineNC status lines of not-current windows
Title titles for output from :set all, \:autocmd" etc.
Visual Visual mode selection
WarningMsg warning messages
LineNr line number for \:number" and \:#" commands, and when number
Normal normal text
Search last search pattern highlighting (see hlsearch)

Highlight arguments for color terminals (MS-DOS console, color-xterm)

cterm=attr-list The cterm argument is likely to be di�erent from term, when colors are used. For example,
in a normal terminal comments could be underlined, in a color terminal they can be made Blue.

Note: Many terminals (e.g., DOS console) can't mix these attributes with coloring. Use only one of
cterm= OR ctermfg= OR ctermbg=.

ctermfg=color-num, ctermbg=color-num The color-num argument is a color number. It ranges from
zero to the number given by the termcap entry \Co" (non-inclusive). The actual color with this number
depends on the type of terminal and its settings. Sometimes the color also depends on the settings of
cterm. For example, on some systems cterm=bold ctermfg=3 gives another color, on others you just get
color 3.

The following names are recognized, with the color number used:

NR-16 NR-8 Color Name NR-16 NR-8 Color Name

0 0 Black 8 0* DarkGray
1 4 DarkBlue 9 4* Blue, LightBlue
2 2 DarkGreen 10 2* Green, LightGreen
3 6 DarkCyan 11 6* Cyan, LightCyan
4 1 DarkRed 12 1* Red, LightRed
5 5 DarkMagenta 13 5* Magenta, LightMagenta
6 3 Brown 14 3* Yellow
7 7 LightGray13, Gray 15 7* White

The number under NR-16 is used for 16-color terminals (\t Co" greater than or equal to 16). The
number under NR-8 is used for 8-color terminals (\t Co" less than 16). The *" indicates that the bold
attribute is set for ctermfg. In many 8-color terminals (e.g. linux), this causes the bright colors to
appear. This doesn't work for background colors. The case of the color names is ignored.

Highlight arguments for the GUI

gui=attr-list These give the attributes to use in the GUI mode. Note that bold can be also sed here and
by specifying a bold font. It has the same e�ect.

font=font-name font-name is the name of a font as it is used on the system VIM runs on. The font-
name NONE can be used to revert to the default font. When setting the font for the Normal group,
this becomes the default font (until the guifont option is changed; the last one set is used).
Note: all fonts used should be of the same character size as the default font!

guifg=color-name guibg=color-name These give the foreground (guifg) and background (guibg) color
to use in the GUI. There are a few special names:

NONE no color (transparent)
background (bg) use normal background color
foreground (fg) use normal foreground color

You can also specify a color in the RGB format #rrggbb, where rr is the Red value, bb is the Blue
value and gg is the Green value. All values are hexadecimal, range from 00 to ff.

13Gray can be spelled as Grey

12 AUTOMATIC COMMANDS 41

11.7 Linking groups

:hi[ghlight][!] link from-group to-group If you want to use the same highlighting for several syntax
groups, you can do this by linking these groups into one common highlight group, and give the color
attributes only for that group.

Notes:
� If the from-group and/or to-group doesn't exist, it is created. You don't get an error message for a
non-existent group.

� If the to-group is NONE, the link is removed from the from-group.
� As soon as you use a :highlight command for a linked group, the link is removed.
� If there are already highlight settings for the from-group, the link is not made, unless the ! is given.
For a :highlight link command in a sourced �le, you don't get an error message. This can be used to
skip links for groups that already have settings.

12 Automatic Commands,

You can specify commands to be executed automatically for when reading or writing a �le, when entering
or leaving a bu�er or window, and when exiting VIM.

12.1 De�ning autocommands

:au[tocmd] [group] event pat [nested] cmd Add cmd to the list of commands that will be automatically
executed on event for a �le matching pat. VIM always adds the cmd after existing autocommands, so
that the autocommands execute in the order in which they were given.

The :autocmd command cannot be followed by another command, since any \j" is considered part of the
command. Special characters (e.g. %, <cword>) in the :autocmd arguments are not expanded when the auto-
command is de�ned. These will be expanded when the event is recognized, and the cmd is executed. When
your \.vimrc" �le is sourced twice, the autocommands will appear twice. To avoid this, put :autocmd! in
your \.vimrc" �le, before de�ning autocommands.

When the group argument is not given, VIM uses the current group (as de�ned with :augroup); other-
wise, VIM uses the group de�ned with [group].
Note: while testing autocommands, it might be useful to set verbose=9. This causes the executed auto-
commands to be echoed.

12.2 Removing autocommands

:au[tocmd]! [group] event pat [nested] cmd Remove all autocommands associated with event and pat,
and add the command cmd.

:au[tocmd]! [group] event pat Remove all autocommands associated with event and pat.
:au[tocmd]! [group] * pat Remove all autocommands associated with pat for all events.
:au[tocmd]! [group] event Remove ALL autocommands for event.
:au[tocmd]! [group] Remove ALL autocommands.

When the group argument is not given, VIM uses the current group (as de�ned with :augroup); otherwise,
VIM uses the group de�ned with group.

12.3 Listing autocommands

:au[tocmd] [group] event pat Show the autocommands associated with event and pat.
:au[tocmd] [group] * pat Show the autocommands associated with pat for all events.
:au[tocmd] [group] event Show all autocommands for event.
:au[tocmd] [group] Show all autocommands.

If you provide the group argument, VIM lists only the autocommands for group; otherwise, VIM lists
the autocommands for ALL groups. Note that this argument behavior di�ers from that for de�ning and
removing autocommands.

12 AUTOMATIC COMMANDS 42

12.4 Events

The following events are recognized. Case is ignored; for example, BUFread and bufread can be used
instead of BufRead.

BufFilePre Before changing the name of the current bu�er with the \:�le" command.
BufFilePost After changing the name of the current bu�er with the \:�le" command.
BufNewFile When starting to edit a �le that doesn't exist. Can be used to read in a skeleton �le.
BufReadPre When starting to edit a new bu�er, before reading the �le into the bu�er. Not used if the �le

doesn't exist.
BufRead or BufReadPost When starting to edit a new bu�er, after reading the �le into the bu�er, before

executing the modelines. This does NOT work for :r �le. Not used when the �le doesn't exist. Also
used after successfully recovering a �le.

FileReadPre Before reading a �le with a :read command.
FileReadPost After reading a �le with a :read command. Note that VIM sets the '[and '] marks to the

�rst and last lines of the read. This can be used to operate on the lines just read.
FilterReadPre Before reading a �le from a �lter command. VIM checks the pattern against the the name

of the current bu�er, not the name of the , not the name of the temporary �le that is the output of
the �lter command.

FilterReadPost After reading a �le from a �lter command. VIM checks the pattern against the the name
of the current bu�er as with FilterReadPre.

FileType When the �letype option has been set. <a�le> can be used for the name of the �le where this
option was set, and <amatch> for the new value of �letype.

Syntax When the syntax option has been set. <a�le> can be used for the name of the �le where this option
was set, and <amatch> for the new value of syntax.

StdinReadPre Before reading from stdin into the bu�er. Only used when the \-" argument was used
when VIM was started.

StdinReadPost After reading from stdin into the bu�er, before executing the modelines. Only used when
the \-" argument was used when VIM was started.

BufWrite or BufWritePre Before writing the whole bu�er to a �le.
BufWritePost After writing the whole bu�er to a �le (should undo the commands for

BufWritePre).
FileWritePre Before writing to a �le, when not writing the whole bu�er.
FileWritePost After writing to a �le, when not writing the whole bu�er.
FileAppendPre Before appending to a �le.
FileAppendPost After appending to a �le.
FilterWritePre Before writing a �le for a �lter command. The �le name of the current bu�er is used to

match with the pattern, not the name of the temporary �le that is the input for the �lter command.
FilterWritePost After writing a �le for a �lter command. Like FilterWritePre, the �le name of the current

bu�er is used.
FileChangedShell After VIM runs a shell command and notices that the modi�cation time of the cur-

rent �le has changed since editing started. Run in place of the \has been changed" message. See
timestamp. Useful for reloading related bu�ers which are a�ected by a single command.

FocusGained When Vim got input focus. Only for the GUI version and a few console versions where this
can be detected.

FocusLost When Vim lost input focus. Only for the GUI version and a few console versions where this
can be detected.

CursorHold When the user doesn't press a key for the time speci�ed with updatetime. Not re-triggered
until the user has pressed a key (i.e. doesn't �re every updatetime ms if you leave Vim to make some
co�ee. :) Note: Interactive commands and \:normal" cannot be used for this event.

BufEnter After entering a bu�er. Useful for setting options for a �le type. Also executed when starting to
edit a bu�er, after the BufReadPost autocommands.

BufLeave Before leaving to another bu�er. Also when leaving or closing the current window and the new
current window is not for the same bu�er.

BufUnload Before unloading a bu�er. This is when the text in the bu�er is going to be freed. This may
be after a BufWritePost and before a BufDelete.

BufHidden Just after a bu�er has become hidden. That is, when there are no longer windows that show
the bu�er, but the bu�er is not unloaded or deleted. NOTE: When this autocommand is executed, the
current bu�er \%" may be di�erent from the bu�er being unloaded hafilei.

BufCreate Just after creating a new bu�er. Also used just after a bu�er has been renamed. NOTE: When
this autocommand is executed, the current bu�er \%" may be di�erent from the bu�er being deleted
hafilei.

12 AUTOMATIC COMMANDS 43

BufDelete Before deleting a bu�er from the bu�er list. The BufUnload may be called �rst (if the bu�er
was loaded).

WinEnter After entering another window. Not done for the �rst window, when VIM has been just started.
Useful for setting the window height. If the window belongs to a di�erent bu�er from the one previously
being edited, VIM executes the BufEnter autocommands after the WinEnter autocommands.

WinLeave Before leaving a window. If the window to be entered next is for a di�erent bu�er, VIM executes
the BufLeave autocommands before the WinLeave autocommands.

GUIEnter After starting the GUI succesfully, and after opening the window. It is triggered before VimEnter
when using gvim. Can be used to position the window from a .gvimrc �le:

VimEnter After doing all the startup stu�, including loading .vimrc �les, executing the \-c cmd" arguments,
creating all windows and loading the bu�ers in them.

VimLeavePre Before exiting Vim, just before writing the .viminfo �le. This is executed only once, if there
is a match with the name of what happens to be the current bu�er when exiting.

VimLeave Before exiting VIM, just before writing the .viminfo �le.
User Never executed automatically. To be used for autocommands that are only executed with :doautocmd.
FileEncoding Fires o� when you change the �le encoding with \:set �leencoding". Allows you to set up

fonts or other language sensitive settings.
TermChanged After the value of term was changed. Useful for re-loading the syntax �le to update the

colors, fonts and other terminal-dependent.

12.5 Patterns

The �le pattern is tested for a match against the �le name in one of two ways:

� When there is no \/" in the pattern, VIM checks for a match against only the tail part of the �le
name (without its leading directory path).

� When there is a \/" in the pattern, VIM checks for a match against the short �le name (as you typed
it) and the full �le name (after expanding it to a full path, resolving symbolic links).

The pattern is interpreted like mostly used in �le names. When the pattern starts with \/", this does
not mean it matches the root directory. It can match any \/" in the �le name. To match the root directory,
use \b/".

For all systems the \/" character is used for path separator (even on MS-DOS and OS/2). This was
done because the backslash is diÆcult to use in a pattern, and to make the autocommands portable across
di�erent systems.

Using \�" in a �le name (for home directory) doesn't work. Use a pattern that matches the full path
name, for example *home/user/.cshrc".

12.6 Filetypes

On systems which support �letypes you can specify that a command should only be executed if the �le
is of a certain type. The actual type checking depends on which platform you are running Vim on. To use
�letype checking in an autocommand you should put a list of types to match in angle brackets in place of a
pattern.

To enable �le type detection, use this command in your vimrc: :�letype on. This command will load the
�le $VIMRUNTIME/�letype.vim, which de�nes autocommands for the FileType event. If the �le type is
not found by the name, the �le $VIMRUNTIME/scripts.vim is used to detect it from the contents of the
�le.

12.7 Groups

:aug[roup] name De�ne the autocmd group name for the following :autocmd commands. The name \end"
or \END" selects the default group.

When no speci�c group is selected, VIM uses the default group. The default group does not have a
name. You cannot execute the autocommands from the default group separately; you can execute them
only by executing autocommands for all groups.

Normally, when executing autocommands automatically, VIM uses the autocommands for all groups.
The group only matters when executing autocommands with :doautocmd or :doautoall, or when de�ning or
deleting autocommands.

The group name can contain any characters except white space. The group name end is reserved (also
in uppercase).

12 AUTOMATIC COMMANDS 44

12.8 Executing autocommands

Autocommands can also be executed manually. This can be used after adjusting the autocommands, or
when the wrong autocommands have been executed (�le pattern match was wrong).

Note: there is currently no way to disable the autocommands.

:do[autocmd] [group] event [fname] Apply the autocommands matching [fname] (default: current �le
name) for event to the current bu�er. This can be used when the current �le name does not match the
right pattern, after changing settings, or to execute autocommands for a certain event. It's possible to
use this inside an autocommand too, so you can base the autocommands for one extension on another
extension.

When the [group] argument is not given, VIM executes the autocommands for all groups. When the
[group] argument is included, VIM executes only the matching autocommands for that group.

Note: if you use an unde�ned group name, VIM gives you an error message.
:doautoa[ll] [group] event [fname] Like :doautocmd, but apply the autocommands to each loaded bu�er.

Careful: Don't use this for autocommands that delete a bu�er, change to another bu�er or change
the contents of a bu�er, the result is unpredictable. It is only meant to perform autocommands that set
options, change highlighting, and so on.

12.9 Using autocommands

Reading �les

For reading �les there are three possible pairs of events. VIM uses only one pair at a time:

BufNewFile start editing a non-existent file

BufReadPre BufReadPost start editing an existing file

FilterReadPre FilterReadPost read the temp file with filter output

FileReadPre FileReadPost any other file read

Reading compressed �les
Example

1 :autocmd! BufReadPre,FileReadPre *.gz set bin

2 :autocmd BufReadPost,FileReadPost *.gz '[,']!gunzip

3 :autocmd BufReadPost,FileReadPost *.gz set nobin

4 :autocmd BufReadPost,FileReadPost *.gz execute ":doautocmd BufReadPost" . %:r

Writing Files

For writing �les there are four possible pairs of events. VIM uses only one pair at a time:

BufWritePre BufWritePost write the whole buffer

FilterWritePre FilterWritePost write to the temp file with filter input

FileAppendPre FileAppendPost append to a file

FileWritePre FileWritePost any other file write

Writing compressed �les
Example

1 :autocmd! BufWritePost,FileWritePost *.gz !mv <afile> <afile>:r

2 :autocmd BufWritePost,FileWritePost *.gz !gzip <afile>:r

3 :autocmd! FileAppendPre *.gz !gunzip <afile>

4 :autocmd FileAppendPre *.gz !mv <afile>:r <afile>

5 :autocmd! FileAppendPost *.gz !mv <afile> <afile>:r

6 :autocmd FileAppendPost *.gz !gzip <afile>:r

Nesting

By default, autocommands do not nest. If you use :e or :w in an autocommand, VIM does not execute
the BufRead and BufWrite autocommands for those commands. If you do want this, use the nested
ag for
those commands in which you want nesting. The nesting is limited to 10 levels to get out of recursive loops.

13 MISCELLANY 45

Order of execution

All matching autocommands will be executed in the order that they were speci�ed. It is recommended
that your �rst autocommand be used for all �les by using *" as the �le pattern. This means that you can
de�ne defaults you like here for any settings, and if there is another matching autocommand it will override
these. But if there is no other matching autocommand, then at least your default settings are recovered
(if entering this �le from another for which autocommands did match). Note that *" will also match �les
starting with \.", unlike Unix shells.

Search Patterns

The search patterns are saved and restored, so that the autocommands do not change them. While
executing autocommands, you can use search patterns normally, e.g. with the n command. After the
autocommands �nish, the patterns from before the autocommand execution are restored. This means that
the strings highlighted with the hlsearch option are not a�ected by autocommands.

13 Miscellany

13.1 VIM modes

BASIC modes

Vim has six BASIC modes14:

Normal mode
In Normal mode you can enter all the normal editor commands. If you start the editor you are in this
mode. This is also known as command mode.

Visual mode
This is like Normal mode, but the movement commands extend a highlighted area. When a non-
movement command is used, it is executed for the highlighted area.

Select mode
This looks most like the MS-Windows selection mode. Typing a printable character deletes the selection
and starts Insert mode.

Insert mode
In Insert mode the text you type is inserted into the bu�er.

Command-line mode
In Command-line mode (also called Cmdline mode) you can enter one line of text at the bottom of the
window. This is for the Ex commands, \:", the pattern search commands, \?" and \/", and the �lter
command, \!".

Ex mode
Like Command-line mode, but after entering a command you remain in Ex mode. Very limited editing
of the command line.

ADDITIONAL modes

There are �ve ADDITIONAL modes:

Operator-pending mode
This is like Normal mode, but after an operator command has started, and Vim is waiting for a motion
to specify the text that the operator will work on.

Replace mode
Replace mode is a special case of Insert mode. You can do the same things as in Insert mode, but for
each character you enter, one character of the existing text is deleted.

Insert Normal mode
Entered when CTRL-O given in Insert mode. This is like Normal mode, but after executing one
command Vim returns to Insert mode.

Insert Visual mode
Entered when starting a Visual selection from Insert mode. When the Visual selection ends, Vim
returns to Insert mode.

Insert Select mode
Entered when starting Select mode from Insert mode. When the Select mode ends, Vim returns to
Insert mode.

14The type of the mode is shown on the status line if the showmode option is set

13 MISCELLANY 46

Switching from mode to mode

If for any reason you do not know which mode you are in, you can always get back to Normal mode by
typing Esc twice.

FROM # TO ! Normal Visual Select Insert Replace Cmd-line Ex

Normal { v V bV { { R : / ? ! Q
Visual { { bG c C { : {
Select { bO bG { { { : {
Insert Esc { { { Ins { {

Replace Esc { { Ins { { {

Cmd-line { { { :start { { {
Ex :vi { { { { { {

13.2 VIM registers

There are nine types of VIM registers:

1. Unnamed register ""

This register is used to place all text deleted with the \d", \c", \s", \x" commands or copied with the
yank command, regardless of whether or not a speci�c register was used (e.g. "xdd). An exception is the
register: " dd does -not store the deleted text in any register.The contents of this register are used by any
put command (p or P) which does not specify a register. It can be also accessed by the name ".

2. Numbered registers "0{"9

These are �lled with yank and delete commands. Register \0" is �lled with the last yank command,
unless another register was speci�ed. Register \1" is �lled with the text that was deleted by each delete or
change command, unless another register was speci�ed or the text is less than one line (text deleted with
\x" or \dw" will be put in the small delete register). The contents of register \1" are put in \2", \2"
! \3", and so forth. The content of register \9" is lost.

3. Small delete register "-

This one is �lled with delete commands that delete less than one line, except when another register was
speci�ed.

4. Named registers "a{"z and "A{"Z

These are only �lled when you say so. They are named \a" to \z" normally. If you use an uppercase
letter, the same register as with the lower case letter is used, but the text is appended to the previous
content. With a lower case letter the previous content is lost.

5. Read-only registers ":, "., "% and "#

They can only be used with the commands \p", \P", \:put" and with CTRL-R .

". Contains the last inserted text (the same as what is inserted with the insert mode commands CTRL-A

and CTRL-@).

Note: this doesn't work with CTRL-R on the command line.

"% Contains the name of the current �le.
"# Contains the name of the alternate �le.
": Contains the last command line. It can be used with \@:", this repeats the last command line.

6. Expression register "=

This is not really a register that stores text, but a way to use an expression where a register can be used.
It is read-only, you cannot put text into the expression register. After the \=", the cursor moves to
the command line, where you can enter any expression. All normal command line editing commands are
available, including a special history for expressions. When you end the command line by typing hCRi, the
result of the expression is computed. If you end it with hEsci, the expression is abandoned. If the entered
command line is empty, the previous expression is used.

13 MISCELLANY 47

7. Selection register "*

This is used for storing and retrieving the selected text for the GUI.
If you use a put command without specifying a register, the register that was last written to is used (this

is also the content of the unnamed register). If you are confused, use the \:dis" command to �nd out what
will be put.

8. Black hole register "

When writing to this register, nothing happens. This can be used to delete text without a�ecting the
normal registers. When reading from this register, nothing is returned.

9. Last search pattern register "/

Contains the most recent search-pattern. This is used for n and hlsearch.

13 MISCELLANY 48

NOTES

VIM Distribution:

VIM is Charityware. Please, read VIM documentation for details.

VIM Guide c
 1997-2000, Oleg Raisky <olrcc@scisun.sci.ccny.cuny.edu>

VIM Author, Bram Moolenaar <bram@vim.org>
Proofread by Jean Jordaan <rgo_anas@rgo.sun.ac.za>

VIM on WWW: http://www.vim.org/
This document: http://scisun.sci.ccny.cuny.edu/~olrcc/vim/

